On bipartite graphs with linear Ramsey numbers

被引:25
作者
Graham, RL [1 ]
Rödl, V
Rucinski, A
机构
[1] UCSD, La Jolla, CA 92093 USA
[2] Adam Mickiewicz Univ, Poznan, Poland
[3] Emory Univ, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
AMS Subject Classification (2000) Classes:  05C55, 05D40, 05C80;
D O I
10.1007/s004930100018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an elementary proof of the fact that the ramsey number of every bipartite graph H with maximum degree at most Delta is less than 8(8 Delta)(Delta)\V(H)\. This improves an old upper bound on the ramsey number of the n-cube due to Beck, and brings us closer toward the bound conjectured by Burr and Erdos. Applying the probabilistic method we also show that for all Delta greater than or equal to 1 and n greater than or equal to Delta + 1 there exists a bipartite graph with n vertices and maximum degree at most Delta whose ramsey number is greater than c(Delta)n for some absolute constant c > 1.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 15 条
  • [1] BECK J, 1983, STUD SCI MATH HUNG, V18, P401
  • [2] Burr S.A., 1975, C MATH SOC J BOLYAI, V10, P214
  • [3] CHUNG F, 1998, ERDOS GRAPHS
  • [4] THE RAMSEY NUMBER OF A GRAPH WITH BOUNDED MAXIMUM DEGREE
    CHVATAL, C
    RODL, V
    SZEMEREDI, E
    TROTTER, WT
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (03) : 239 - 243
  • [5] Ramsey numbers for sparse graphs
    Eaton, N
    [J]. DISCRETE MATHEMATICS, 1998, 185 (1-3) : 63 - 75
  • [6] Graham RL, 2000, J GRAPH THEOR, V35, P176, DOI 10.1002/1097-0118(200011)35:3<176::AID-JGT3>3.0.CO
  • [7] 2-C
  • [8] GRAPHAM RL, 1990, RAMSEY THEORY
  • [9] Janson S, 2000, WIL INT S D, DOI 10.1002/9781118032718
  • [10] Komlos J, 1996, BOLYAI MATH STUD, V2, P295