Stability threshold for 2D shear flows of the Boussinesq system near Couette

被引:8
作者
Bian, Dongfen [1 ]
Pu, Xueke [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
关键词
ENHANCED DISSIPATION; SUPERPOSED STREAMS; EQUATIONS;
D O I
10.1063/5.0091052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T x R. We prove the nonlinear stability of the shear flow (U-S, Theta(S)) = ((e(nu t partial derivative yy) U(y), 0)(?), alpha y) with U(y) close to y and alpha >= 0 in Sobolev spaces for the following two cases: (i) alpha >_ 0 is small scaling with the viscosity coefficients and initial perturbation < min{nu,mu}(1/2) and (ii) alpha > 0 is not small, the heat diffusion coefficient mu is fixed, and initial perturbation <= nu(1/2). Published under an exclusive license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 50 条
[21]   STABILITY AND ALGEBRA DECAY FOR 2D BOUSSINESQ SYSTEM WITH PARTIAL HORIZONTAL DISSIPATION AND HORIZONTAL DIFFUSION [J].
Wan, Yaqi ;
Chen, Xiaoli .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (09) :2784-2813
[22]   Stability of hydrostatic equilibrium to the 2D Boussinesq systems with partial dissipation [J].
Ji, Ruihong ;
Li, Dan ;
Wei, Youhua ;
Wu, Jiahong .
APPLIED MATHEMATICS LETTERS, 2019, 98 :392-397
[23]   Asymptotics for the semi-dissipative 2D Boussinesq system [J].
He, Jinfang ;
Wang, Jijun ;
Zhao, Yandong .
JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (03)
[24]   ON THE GLOBAL REGULARITY OF THE 2D CRITICAL BOUSSINESQ SYSTEM WITH α&gt;2/3 [J].
Hadadifard, Fazel ;
Stefanov, Atanas .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (05) :1325-1351
[25]   Temperature Patches for a Generalised 2D Boussinesq System with Singular Velocity [J].
Khor, Calvin ;
Xu, Xiaojing .
JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (02)
[26]   The global attractor of the 2D Boussinesq system with fractional vertical dissipation [J].
Su, Xing .
BOUNDARY VALUE PROBLEMS, 2016,
[27]   On the stability threshold for the 3D Couette flow in Sobolev regularity [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
ANNALS OF MATHEMATICS, 2017, 185 (02) :541-608
[28]   Stability of the Couette flow under the 2D steady Navier-Stokes flow [J].
Wang, Wendong .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (03) :1296-1309
[29]   Stability of the Couette flow under the 2D steady Navier-Stokes flow [J].
Wang, Wendong .
MATHEMATISCHE NACHRICHTEN, 1600, 3 (09) :1144-0546-1369-9261
[30]   Stability of the Couette flow under the 2D steady Navier-Stokes flow [J].
Wang, Wendong .
MATHEMATISCHE NACHRICHTEN, 1600, 10 (00) :2235-2988