Stability threshold for 2D shear flows of the Boussinesq system near Couette

被引:8
作者
Bian, Dongfen [1 ]
Pu, Xueke [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
关键词
ENHANCED DISSIPATION; SUPERPOSED STREAMS; EQUATIONS;
D O I
10.1063/5.0091052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T x R. We prove the nonlinear stability of the shear flow (U-S, Theta(S)) = ((e(nu t partial derivative yy) U(y), 0)(?), alpha y) with U(y) close to y and alpha >= 0 in Sobolev spaces for the following two cases: (i) alpha >_ 0 is small scaling with the viscosity coefficients and initial perturbation < min{nu,mu}(1/2) and (ii) alpha > 0 is not small, the heat diffusion coefficient mu is fixed, and initial perturbation <= nu(1/2). Published under an exclusive license by AIP Publishing.
引用
收藏
页数:14
相关论文
共 33 条
[1]   Dynamics Near the Subcritical Transition of the 3D Couette Flow II: Above Threshold Case [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 279 (1377) :I-+
[2]  
Bedrossian J, 2020, MEM AM MATH SOC, V266, P1
[3]   STABILITY OF THE COUETTE FLOW AT HIGH REYNOLDS NUMBERS IN TWO DIMENSIONS AND THREE DIMENSIONS [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 56 (03) :373-414
[4]   The Sobolev Stability Threshold for 2D Shear Flows Near Couette [J].
Bedrossian, Jacob ;
Vicol, Vlad ;
Wang, Fei .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (06) :2051-2075
[5]   On the stability threshold for the 3D Couette flow in Sobolev regularity [J].
Bedrossian, Jacob ;
Germain, Pierre ;
Masmoudi, Nader .
ANNALS OF MATHEMATICS, 2017, 185 (02) :541-608
[6]   Enhanced Dissipation and Inviscid Damping in the Inviscid Limit of the Navier-Stokes Equations Near the Two Dimensional Couette Flow [J].
Bedrossian, Jacob ;
Masmoudi, Nader ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (03) :1087-1159
[7]   INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS IN THE 2D EULER EQUATIONS [J].
Bedrossian, Jacob ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :195-300
[8]  
Bianchini R, 2021, Arxiv, DOI [arXiv:2005.09058, 10.48550/arXiv.2005.09058, DOI 10.48550/ARXIV.2005.09058]
[9]  
Cannon J., 1980, LECT NOTES MATH, V771
[10]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946