GENERALIZED EIGENVALUES OF THE (P, 2)-LAPLACIAN UNDER A PARAMETRIC BOUNDARY CONDITION

被引:11
作者
Abreu, Jamil [1 ]
Madeira, Gustavo F. [2 ]
机构
[1] Univ Fed Espirito Santo, Dept Matemat Aplicada, Rodovia BR 101,Km 60, Sao Mateus, ES, Brazil
[2] Univ Fed Sao Carlos UFSCar, Dept Matemat, Rod Washington Luis,Km 235, Sao Carlos, SP, Brazil
关键词
eigenvalue problem; continuous family of eigenvalues; (p; 2)-Laplacian; Steklov boundary condition; boundary condition with eigenvalue parameter;
D O I
10.1017/S0013091519000403
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a general eigenvalue problem for the so called (p, 2)-Laplace operator on a smooth bounded domain Omega subset of R-N under a nonlinear Steklov type boundary condition, namely {-Delta(p)u - Delta u = lambda a(X)u in Omega, (vertical bar del u vertical bar(p-2) + 1)partial derivative u/partial derivative v = lambda b(x)u on partial derivative Omega. For positive weight functions a and b satisfying appropriate integrability and boundedness assumptions, we show that, for all p > 1, the eigenvalue set consists of an isolated null eigenvalue plus a continuous family of eigenvalues located away from zero.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 24 条
[1]   On principal eigenvalues for boundary value problems with indefinite weight and Robin boundary conditions [J].
Afrouzi, GA ;
Brown, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :125-130
[2]  
Aizicovici S, 2015, T AM MATH SOC, V367, P7343
[3]  
ANANE J. A., 1996, Pitman Research Notes in Mathematics Series, P1
[4]  
[Anonymous], ELECT J DIFFER EQU C
[5]  
[Anonymous], 1930, Mathematisch-Physikalische Klasse
[6]  
[Anonymous], 2003, Pure Applied Mathematics
[7]  
[Anonymous], 2014, Topological and variational methods with applications to nonlinear boundary value problems
[8]  
[Anonymous], 1983, PARTIAL DIFFERENTIAL
[9]  
[Anonymous], 1987, COMM PARTIAL DIFFERE
[10]  
[Anonymous], 1902, Ann. Sci. Ecole Norm. Sup.