Source Apportionment of Fine Organic Particulate Matter (PM2.5) in Central Addis Ababa, Ethiopia

被引:13
|
作者
Tefera, Worku [1 ]
Kumie, Abera [1 ]
Berhane, Kiros [2 ]
Gilliland, Frank [3 ]
Lai, Alexandra [4 ]
Sricharoenvech, Piyaporn [4 ]
Patz, Jonathan [5 ]
Samet, Jonathan [6 ]
Schauer, James J. [4 ,7 ]
机构
[1] Addis Ababa Univ, Coll Hlth Sci, Sch Publ Hlth, Addis Ababa 9086, Ethiopia
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
[3] Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90033 USA
[4] Univ Wisconsin Madison, Environm Chem & Technol Program, Madison, WI 53706 USA
[5] Univ Wisconsin, Global Hlth Inst, Madison, WI 53706 USA
[6] Colorado Sch Publ Hlth, Off Dean, Aurora, CO 80045 USA
[7] Univ Wisconsin Madison, Wisconsin State Lab Hyg, Madison, WI 53706 USA
关键词
ambient air pollution; motor vehicles; biomass burning; soil dust; seasonality; source apportionment; chemical mass balance (CMB); POLYCYCLIC AROMATIC-HYDROCARBONS; AIR-POLLUTION; AEROSOL; EMISSIONS; MARKER; CONSTITUENTS; COMBUSTION; CARBON; SMOKE; RATIO;
D O I
10.3390/ijerph182111608
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of infrastructure, a rapidly increasing population, and urbanization has resulted in increasing air pollution levels in the African city of Addis Ababa. Prior investigations into air pollution have not yet sufficiently addressed the sources of atmospheric particulate matter. This study aims to identify the major sources of fine particulate matter (PM2.5) and its seasonal contribution in Addis Ababa, Ethiopia. Twenty-four-hour average PM2.5 mass samples were collected every 6th day, from November 2015 through November 2016. Chemical species were measured in samples and source apportionment was conducted using a chemical mass balance (CMB) receptor model that uses particle-phase organic tracer concentrations to estimate source contributions to PM2.5 organic carbon (OC) and the overall PM2.5 mass. Vehicular sources (28%), biomass burning (18.3%), plus soil dust (17.4%) comprise about two-thirds of the PM2.5 mass, followed by sulfate (6.5%). The sources of air pollution vary seasonally, particularly during the main wet season (June-September) and short rain season (February-April): From motor vehicles, (31.0 & PLUSMN; 2.6%) vs. (24.7 & PLUSMN; 1.2%); biomass burning, (21.5 & PLUSMN; 5%) vs. (14 & PLUSMN; 2%); and soil dust, (11 & PLUSMN; 6.4%) vs. (22.7 & PLUSMN; 8.4%), respectively, are amongst the three principal sources of ambient PM2.5 mass in the city. We suggest policy measures focusing on transportation, cleaner fuel or energy, waste management, and increasing awareness on the impact of air pollution on the public's health.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Source apportionment of PM2.5 pollution in an industrial city in southern China
    Zou, Bei-Bing
    Huang, Xiao-Feng
    Zhang, Bin
    Dai, Jing
    Zeng, Li-Wu
    Feng, Ning
    He, Ling-Yan
    ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (06) : 1193 - 1202
  • [22] Chemical characteristics and source apportionment of particulate matter (PM2.5) in Dammam, Saudi Arabia: Impact of dust storms
    Alwadei, Manna
    Srivastava, Deepchandra
    Alam, Mohammed S.
    Shi, Zongbo
    Bloss, William J.
    ATMOSPHERIC ENVIRONMENT-X, 2022, 14
  • [23] Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan
    Stone, Elizabeth
    Schauer, James
    Quraishi, Tauseef A.
    Mahmood, Abid
    ATMOSPHERIC ENVIRONMENT, 2010, 44 (08) : 1062 - 1070
  • [24] Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China
    Yan, Shaomin
    Wu, Guang
    SCIENTIFIC REPORTS, 2016, 6
  • [25] Fine Particulate Matter (PM2.5) and the Risk of Stroke in the REGARDS Cohort
    McClure, Leslie A.
    Loop, Matthew S.
    Crosson, William
    Kleindorfer, Dawn
    Kissela, Brett
    Al-Hamdan, Mohammad
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2017, 26 (08) : 1739 - 1744
  • [26] Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China
    Huang XiaoFeng
    Yun Hui
    Gong ZhaoHeng
    Li Xiang
    He LingYan
    Zhang YuanHang
    Hu Min
    SCIENCE CHINA-EARTH SCIENCES, 2014, 57 (06) : 1352 - 1362
  • [27] Chemical Characterization and Seasonality of Ambient Particles (PM2.5) in the City Centre of Addis Ababa
    Tefera, Worku
    Kumie, Abera
    Berhane, Kiros
    Gilliland, Frank
    Lai, Alexandra
    Sricharoenvech, Piyaporn
    Samet, Jonathan
    Patz, Jonathan
    Schauer, James J.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (19) : 1 - 16
  • [28] Reactive oxygen species (ROS) activity of fine particulate matter health impacts in Addis Ababa, Ethiopia
    Sricharoenvech, Piyaporn
    Lai, Alexandra
    Tefera, Worku
    Kumie, Abera
    Berhane, Kiros
    Gilliland, Frank
    Samet, Jonathan
    Patz, Jonathan
    Schauer, James J.
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (09)
  • [29] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Huang, Fan
    Zhou, Jiabin
    Chen, Nan
    Li, Yuhua
    Li, Kuan
    Wu, Shuiping
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 2019, 76 (03) : 245 - 262
  • [30] Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam
    Nguyen, Tuyet Nam Thi
    Du, Nguyen Xuan
    Hoa, Nguyen Thi
    ATMOSPHERE, 2023, 14 (03)