Deep learning-based early weed segmentation using motion blurred UAV images of sorghum fields

被引:37
|
作者
Genze, Nikita [1 ,2 ]
Ajekwe, Raymond [4 ]
Guereli, Zeynep [1 ,2 ]
Haselbeck, Florian [1 ,2 ]
Grieb, Michael [4 ]
Grimm, Dominik G. [1 ,2 ,3 ]
机构
[1] Tech Univ Munich, TUM Campus Straubing Biotechnol & Sustainabil, Bioinformat, Schulgasse 22, D-94315 Straubing, Germany
[2] Weihenstephan Triesdorf Univ Appl Sci, Bioinformat, Petersgasse 18, D-94315 Straubing, Germany
[3] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Garching, Germany
[4] Technol & Support Ctr Ctr Excellence Renewable Res, Schulgasse 18, D-94315 Straubing, Germany
关键词
Deep learning; Weed detection; Weed segmentation; UAV; Precision agriculture; CROP; COLOR; CLASSIFICATION; INDEXES;
D O I
10.1016/j.compag.2022.107388
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Weeds are undesired plants in agricultural fields that affect crop yield and quality by competing for nutrients, water, sunlight and space. For centuries, farmers have used several strategies and resources to remove weeds. The use of herbicide is still the most common control strategy. To reduce the amount of herbicide and impact caused by uniform spraying, site-specific weed management (SSWM) through variable rate herbicide application and mechanical weed control have long been recommended. To implement such precise strategies, accurate detection and classification of weeds in crop fields is a crucial first step. Due to the phenotypic similarity between some weeds and crops as well as changing weather conditions, it is challenging to design an automated system for general weed detection. For efficiency, unmanned aerial vehicles (UAV) are commonly used for image capturing. However, high wind pressure and different drone settings have a severe effect on the capturing quality, what potentially results in degraded images, e.g., due to motion blur. In this paper, we investigate the generalization capabilities of Deep Learning methods for early weed detection in sorghum fields under such challenging capturing conditions. For this purpose, we developed weed segmentation models using three different state-of-the-art Deep Learning architectures in combination with residual neural networks as feature extractors. We further publish a manually annotated and expert-curated UAV imagery dataset for weed detection in sorghum fields under challenging conditions. Our results show that our trained models generalize well regarding the detection of weeds, even for degraded captures due to motion blur. An UNet-like architecture with a ResNet34 feature extractor achieved an F1-score of over 89% on a hold-out test-set. Further analysis indicate that the trained model performed well in predicting the general plant shape, while most misclassifications appeared at borders of the plants. Beyond that, our approach can detect intra-row weeds without additional information as well as partly occluded plants in contrast to existing research. All data, including the newly generated and annotated UAV imagery dataset, and code is publicly available on GitHub: https://github.com/grimmlab/UAVWeedSegmentation and Mendeley Data: https://doi. org/10.17632/4hh45vkp38.4.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep learning-based precision agriculture through weed recognition in sugar beet fields
    Nasiri, Amin
    Omid, Mahmoud
    Taheri-Garavand, Amin
    Jafari, Abdolabbas
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2022, 35
  • [32] Improving weed segmentation in sugar beet fields using potentials of multispectral unmanned aerial vehicle images and lightweight deep learning
    Khoshboresh-Masouleh, Mehdi
    Akhoondzadeh, Mehdi
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)
  • [33] UAV-based weed detection in Chinese cabbage using deep learning
    Ong, Pauline
    Teo, Kiat Soon
    Sia, Chee Kiong
    SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [34] Deep Learning-Based Super-Resolution Reconstruction and Segmentation of Photoacoustic Images
    Jiang, Yufei
    He, Ruonan
    Chen, Yi
    Zhang, Jing
    Lei, Yuyang
    Yan, Shengxian
    Cao, Hui
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [35] Deep Learning-Based Real-Time Crack Segmentation for Pavement Images
    Wenjun Wang
    Chao Su
    KSCE Journal of Civil Engineering, 2021, 25 : 4495 - 4506
  • [36] Deep Learning-Based Corpus Callosum Segmentation from Brain Images: A Review
    Sarma, Padmanabha
    Saranya, G.
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (02) : 685 - 700
  • [37] Deep Learning-Based Real-Time Crack Segmentation for Pavement Images
    Wang, Wenjun
    Su, Chao
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (12) : 4495 - 4506
  • [38] Optimizing Glaucoma Diagnosis with Deep Learning-Based Segmentation and Classification of Retinal Images
    Alkhaldi, Nora A.
    Alabdulathim, Ruqayyah E.
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [39] Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge
    Song, Yucheng
    Ren, Shengbing
    Lu, Yu
    Fu, Xianghua
    Wong, Kelvin K. L.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [40] Deep learning-based pelvic levator hiatus segmentation from ultrasound images
    Huang, Zeping
    Qu, Enze
    Meng, Yishuang
    Zhang, Man
    Wei, Qiuwen
    Bai, Xianghui
    Zhang, Xinling
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2022, 9