Prediction of phase transitions by investigating CO2 adsorption on 1% lithium doped MIL-101 (Cr) MOF with anomalous type isosteric heat of adsorption

被引:9
|
作者
Kayal, Sibnath [1 ]
Teo, How Wei Benjamin [1 ]
Chakraborty, Anutosh [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
CO2; adsorption; Isotherms; Triple point; Isosteric heat of adsorption; Phase transition; METAL-ORGANIC FRAMEWORK; GRAPHITIZED CARBON-BLACK; EXFOLIATED GRAPHITE; KRYPTON ADSORPTION; SURFACE-AREA; METHANE; HYSTERESIS; ISOTHERM; DIOXIDE; STORAGE;
D O I
10.1016/j.micromeso.2016.08.020
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The amount of adsorbate uptakes and heats of adsorption (Qst) for CO2 + 1% Li doped MIL-101 (Cr) metal organic framework (MOF) system are measured at wide ranges of pressures and temperatures. Some data are reported for the regions below the triple point (200 K-216.5 K). The multilayer CO2 adsorption uptakes in a series of discontinuous jump are found in the sub-triple region. Various types and shapes of Qst are observed and the unexpected differences in Qst at sub-triple, sub-critical and super critical regions are explained. At sub-triple zone, two sharp spikes of Qst against uptakes are found for identifying the transitions of adsorbate layer from the gaseous phase to the solid phase. The gas liquid transition is also observed from the uptake dependence Qst data at 220 K and 240 K. A monotonic decrease in Qst is found at higher temperatures. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [21] Effect of pore size on heat release from CO2 adsorption in MIL-101, MOF-177, and UiO-66
    Auti, Gunjan
    Kametani, Yuki
    Kimura, Hibiki
    Paul, Soumyadeep
    Hsu, Wei-Lun
    Kusaka, Shinpei
    Matsuda, Ryotaro
    Uemura, Takashi
    Chiashi, Shohei
    Daiguji, Hirofumi
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (37) : 20043 - 20054
  • [22] Improving the synthesis process of chromium benzenedicarboxylate, MIL-101(Cr), by a microwave pre-step for CO2 adsorption
    Soltanolkottabi, Fariba
    Talaie, M. R.
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2021, 18 (09) : 2283 - 2289
  • [23] Enhancing carbon dioxide separation from natural gas in dynamic adsorption by a new type of bimetallic MOF; MIL-101(Cr-Al)
    Jolodar, Ali Rafati
    Abdollahi, Mehran
    Fatemi, Shohreh
    Mansoubi, Hadi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 334
  • [24] Flexible and mechanically-stable MIL-101(Cr)@PFs for efficient benzene vapor and CO2 adsorption
    Zhou, Zhenyu
    Cheng, Baihua
    Ma, Chen
    Xu, Feng
    Xiao, Jing
    Xia, Qibin
    Li, Zhong
    RSC ADVANCES, 2015, 5 (114): : 94276 - 94282
  • [25] Solvent-Free Synthesis of MIL-101(Cr) for CO2 Gas Adsorption: The Effect of Metal Precursor and Molar Ratio
    Chong, Kok Chung
    Ho, Pui San
    Lai, Soon Onn
    Lee, Sze Shin
    Lau, Woei Jye
    Lu, Shih-Yuan
    Ooi, Boon Seng
    SUSTAINABILITY, 2022, 14 (03)
  • [26] Esoteric CO adsorption by CuCl-NiCl2 embedded microporous MIL-101 (Cr)
    Tran, Nguyen Tien
    Vo, The Ky
    Kim, Jinsoo
    Othman, Mohd Roslee
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 615
  • [27] Theoretical investigation for adsorption of CO2 and CO on MIL-101 compounds with unsaturated metal sites
    Hou, Xin-Juan
    Li, Huiquan
    He, Peng
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2015, 1055 : 8 - 14
  • [28] Ethylenediamine-incorporated MIL-101(Cr)-NH2 metal-organic frameworks for enhanced CO2 adsorption
    The Ky Vo
    Kim, Woo-Sik
    Kim, Jinsoo
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (07) : 1206 - 1211
  • [29] Improving the synthesis process of chromium benzenedicarboxylate, MIL-101(Cr), by a microwave pre-step for CO2 adsorption
    Fariba Soltanolkottabi
    M. R. Talaie
    Journal of the Iranian Chemical Society, 2021, 18 : 2283 - 2289
  • [30] Insights into adsorption and diffusion of CO2, CH4 and their mixture in MIL-101(Cr) via molecular simulation
    Shao, Yimin
    Fan, Xianfeng
    Wang, Shanshan
    Huang, Liangliang
    Ju, Shenghong
    Li, Wei
    CHEMICAL ENGINEERING JOURNAL, 2024, 480