Tinned graphite felt cathodes for scale-up of electrochemical reduction of aqueous CO2

被引:22
|
作者
Bumroongsakulsawat, P. [1 ]
Kelsall, G. H. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
CO2; electrochemical reduction; Sn; formate; bubble; CARBON-DIOXIDE; ELECTRO-REDUCTION; CONTINUOUS REACTOR; COPPER ELECTRODE; FORMATE; HYDROCARBONS; ION; CONVERSION; SILVER; LEAD;
D O I
10.1016/j.electacta.2015.01.209
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Three-dimensional cathodes with large volumetric surface areas for CO2 reduction in aqueous solutions were fabricated by depositing Sn on graphite felt. CO2 was reduced electrochemically in aqueous solutions of 1M NaClO4 + 0.5 M NaOH saturated with CO2 to pH ca. 7.8 and circulated though the tinned graphite felt cathodes to enhance mass transport rates. Gaseous product bubbles, presumably of CO and H-2, generated within the three-dimensional cathodes decreased effective conductivities of the interstitial electrolyte solutions, increasing potential drops in the ionically conducting phase. This caused reaction rates to decay within the cathodes in the direction of current flow. Hence, the effect of increasing solution flow rate was not only to enhance transport rates, but also to decrease gas fractions within the cathode, increasing effective conductivities of the electrolyte solution and so changing the spatial distribution of potential and current density. An optimal superficial current density and charge yield of 971 A m(-2) and 0.58, respectively, were obtained at -1.62V (AgCl vertical bar Ag) and 99 ml min(-1) solution flow rate; current densities were increased by a factor of 27 compared with the behaviour of a 2D electrode. A one-dimensional mathematical model was developed that was able to predict with adequate accuracy the effects of electrode potential and electrolyte solution flow rates on cross-sectional current densities, charge yields, and potential drops within the three-dimensional cathodes in the direction of current flow. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:242 / 251
页数:10
相关论文
共 50 条
  • [21] The anolyte matters: Towards highly efficient electrochemical CO2 reduction
    Jiang, Hao
    Wang, Lizhang
    Gao, Bai
    Li, Yiran
    Guo, Yadan
    Zhuo, Mengning
    Sun, Kaixuan
    Lu, Binyu
    Jia, Meiyu
    Yu, Xiaoxia
    Wang, Huidong
    Li, Yongge
    CHEMICAL ENGINEERING JOURNAL, 2021, 422 (422)
  • [22] Directing the Outcome of CO2 Reduction at Bismuth Cathodes Using Varied Ionic Liquid Promoters
    Atifi, Abderrahman
    Boyce, David W.
    DiMeglio, John L.
    Rosenthal, Joel
    ACS CATALYSIS, 2018, 8 (04): : 2857 - 2863
  • [23] Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel
    Aeshala, L. M.
    Uppaluri, R. G.
    Verma, A.
    JOURNAL OF CO2 UTILIZATION, 2013, 3-4 : 49 - 55
  • [24] Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO-
    Morimoto, Masayuki
    Takatsuji, Yoshiyuki
    Yamasaki, Ryota
    Hashimoto, Hikaru
    Nakata, Ikumi
    Sakakura, Tatsuya
    Haruyama, Tetsuya
    ELECTROCATALYSIS, 2018, 9 (03) : 323 - 332
  • [25] Electrochemical reduction of CO2: Two- or three-electrode configuration
    Woldu, Abebe Reda
    Shah, Aamir Hassan
    Hu, Haifeng
    Cahen, David
    Zhang, Xuehua
    He, Tao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (01) : 548 - 559
  • [26] A DFT study of CO2 electrochemical reduction on Pb(211) and Sn(112)
    Cui, Chaonan
    Wang, Hua
    Zhu, Xinli
    Han, Jinyu
    Ge, Qingfeng
    SCIENCE CHINA-CHEMISTRY, 2015, 58 (04) : 607 - 613
  • [27] Electrochemical Reduction of CO2: Effect of Convective CO2 Supply in Gas Diffusion Electrodes
    Duarte, Miguel
    De Mot, Bert
    Hereijgers, Jonas
    Breugelmans, Tom
    CHEMELECTROCHEM, 2019, 6 (22): : 5596 - 5602
  • [28] Electrochemical Reduction of CO2 to CO by a Co-N-C Electrocatalyst and PEM Reactor at Ambient Conditions
    Ogihara, Hitoshi
    Maezuru, Tomomi
    Ogishima, Yuji
    Yamanaka, Ichiro
    CHEMISTRYSELECT, 2016, 1 (17): : 5533 - 5537
  • [29] Electrolyte Effects on CO2 Electrochemical Reduction to CO
    Marcandalli, Giulia
    Monteiro, Mariana C. O.
    Goyal, Akansha
    Koper, Marc T. M.
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (14) : 1900 - 1911
  • [30] Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2
    Karamad, Mohammadreza
    Hansen, Heine A.
    Rossmeisl, Jan
    Norskov, Jens K.
    ACS CATALYSIS, 2015, 5 (07): : 4075 - 4081