Numerical surfaces of fractional Zika virus model with diffusion effect of mosquito-borne and sexually transmitted disease

被引:17
作者
Veeresha, Pundikala [1 ]
Akinyemi, Lanre [2 ]
Oluwasegun, Kayode [3 ]
Senol, Mehmet [4 ]
Oduro, Bismark [5 ]
机构
[1] CHRIST Deemed Univ, Dept Math, Bengaluru, India
[2] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[3] Drexel Univ, Dept Math, Philadelphia, PA 19104 USA
[4] Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkey
[5] Calif Univ Penn, Dept Math & Phys Sci, California, PA USA
关键词
Atangana-Baleanu (AB) derivative; disease-free equilibrium; diffusion; equilibrium; q-homotopy analysis transform method; Zika virus; MATHEMATICAL-MODEL; EPIDEMIC MODEL; TRANSMISSION; DYNAMICS; INFECTION; EMERGENCE; EQUATION; HISTORY;
D O I
10.1002/mma.7973
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes the dynamics of fractional partial differential equation (FPDE) model of Zika virus that incorporates diffusion using Atangana-Baleanu (AB) fractional derivative. Zika virus disease is an infection transmitted predominantly by the bite of an infected Aedes species mosquito and may be a severe epidemic if not contained in its premature stages. The q-homotopy analysis transform method is employed to analyze and compute the solutions for this nonlinear partial differential model, and the fractional derivative is defined in Atangana-Baleanu sense. We determine some new approximate numerical results for different values of parameters of alpha. Numerical models focused on various distributions of the population help to explain how the spread of humans and mosquitoes influences the disease's transmission. With the utilization fixed-point hypothesis, the existence and uniqueness of the solutions obtained for the proposed model are presented.
引用
收藏
页码:2994 / 3013
页数:20
相关论文
共 32 条
  • [21] Emerging sexually transmitted viral infections: 2. Review of Zika virus disease
    Caswell, R. J.
    Manavi, K.
    INTERNATIONAL JOURNAL OF STD & AIDS, 2018, 29 (12) : 1238 - 1246
  • [22] GENERIC REACTION-DIFFUSION MODEL FOR TRANSMISSION OF MOSQUITO-BORNE DISEASES: RESULTS OF SIMULATION WITH ACTUAL CASES
    Kon, Cynthia Mui Lian
    Labadin, Jane
    PROCEEDINGS - 30TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2016, 2016, : 93 - 99
  • [23] Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model
    Atama, Nnomzie C.
    Chestakova, Irina, V
    de Bruin, Erwin
    van den Berg, Tijs J.
    Munger, Emmanuelle
    Reusken, Chantal
    Munnink, Bas B. Oude
    van der Jeugd, Henk
    van den Brand, Judith M. A.
    Koopmans, Marion P. G.
    Sikkema, Reina S.
    ONE HEALTH, 2022, 15
  • [25] Another Emerging Mosquito-Borne Disease? Endemic Ross River Virus Transmission in the Absence of Marsupial Reservoirs
    Flies, Emily J.
    Lau, Colleen L.
    Carver, Scott
    Weinstein, Philip
    BIOSCIENCE, 2018, 68 (04) : 288 - 293
  • [26] Emergence of West Nile virus lineage 2 in Europe: a review on the introduction and spread of a mosquito-borne disease
    Hernandez-Triana, Luis M.
    Jeffries, Claire L.
    Mansfield, Karen L.
    Carnell, George
    Fooks, Anthony R.
    Johnson, Nicholas
    FRONTIERS IN PUBLIC HEALTH, 2014, 2
  • [27] Optimal control of vaccination in a vector-borne reaction–diffusion model applied to Zika virus
    Tiago Yuzo Miyaoka
    Suzanne Lenhart
    João F. C. A. Meyer
    Journal of Mathematical Biology, 2019, 79 : 1077 - 1104
  • [28] Simulating Dengue: Comparison of Observed and Predicted Cases from Generic Reaction-Diffusion Model for Transmission of Mosquito-Borne Diseases
    Lian, Cynthia Kon Mui
    Labadin, Jane
    MATEMATIKA, 2019, 35 (03) : 309 - 330
  • [29] Optimal control of vaccination in a vector-borne reaction-diffusion model applied to Zika virus
    Miyaoka, Tiago Yuzo
    Lenhart, Suzanne
    Meyer, Joao F. C. A.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (03) : 1077 - 1104
  • [30] Dynamics and numerical simulations of a generalized mosquito-borne epidemic model using the Ornstein-Uhlenbeck process: Stability, stationary distribution, and probability density function
    Niu, Wenhui
    Zhang, Xinhong
    Jiang, Daqing
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3777 - 3818