The effect of O3-P3-P′3 phases coexistence in NaxFe0.3Co0.7O2 cathode material on its electronic and electrochemical properties. Experimental and theoretical studies

被引:10
作者
Molenda, Janina [1 ]
Plewa, Anna [1 ,2 ]
Kulka, Andrzej [1 ]
Kondracki, Lukasz [1 ]
Walczak, Katarzyna [1 ]
Milewska, Anna [1 ]
Rybski, Michal [3 ]
Lu, Li [2 ]
Tobola, Janusz [3 ]
机构
[1] AGH Univ Sci & Technol, Fac Energy & Fuels, Al Mickiewicza 30, Krakow, Poland
[2] Natl Univ Singapore, Dept Mech Engn, 21 Lower Kent Ridge Rd, Singapore 117575, Singapore
[3] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Al Mickiewicza 30, Krakow, Poland
关键词
Sodium-ion batteries; Intercalation; In-situ; Ex-situ; NaFeyCo(1-y)O2; Electronic structure; TRANSPORT-PROPERTIES; POSITIVE ELECTRODE; SODIUM; TRANSITION; MAGNETISM; LIXCOO2;
D O I
10.1016/j.jpowsour.2019.227471
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within this study, we present the comprehensive study on structural, electrochemical and electronic properties of the NaxFe0.3Co0.7O2 compound as a cathode material for Na-ion type batteries. The XRD in-situ, as well as ex-situ results, revealed that the structural evolution upon Na deintercalation proceeds via intermittent regions composed of O3, P3, and P'3 type structures. Along with the deintercalation reaction, the O3 phase disappears accompanied with profound similar to 0.2 V potential jump on the EMF profile and P3 phase begins deformation to P'3 form. The analysis of the unit cell parameters of the O3, P3 and P'3 type structures confirmed the electrochemical activity of all phases, while the Mossbauer spectroscopy of iron valence states showed that mainly Co3+ ions are involved in electrochemical oxidation processes. The calculated difference in energy between the Delta E-F(x) of both O3 and P3 phases was estimated as similar to 0.18 eV for the Na concentration x similar to 0.75 and collaborated well with similar to 0.2 V potential jump on the EMF profile, indicating that observed variation is linked to the abrupt change of the Fermi level when passing from O3 to P3 phase.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Electronic structure and magnetism of Fe3-xVxX (X=Si, Ga, and Al) alloys by the KKR-CPA method
    Bansil, A
    Kaprzyk, S
    Mijnarends, PE
    Tobola, J
    [J]. PHYSICAL REVIEW B, 1999, 60 (19): : 13396 - 13412
  • [2] Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
  • [3] α-NaFeO2:: ionic conductivity and sodium extraction
    Blesa, MC
    Moran, E
    León, C
    Santamaria, J
    Tornero, JD
    Menéndez, N
    [J]. SOLID STATE IONICS, 1999, 126 (1-2) : 81 - 87
  • [4] The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery
    Carlier, D.
    Cheng, J. H.
    Berthelot, R.
    Guignard, M.
    Yoncheva, M.
    Stoyanova, R.
    Hwang, B. J.
    Delmas, C.
    [J]. DALTON TRANSACTIONS, 2011, 40 (36) : 9306 - 9312
  • [5] ELECTROCHEMICAL INTERCALATION OF SODIUM IN NAXCOO2 BRONZES
    DELMAS, C
    BRACONNIER, JJ
    FOUASSIER, C
    HAGENMULLER, P
    [J]. SOLID STATE IONICS, 1981, 3-4 (AUG) : 165 - 169
  • [6] STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES
    DELMAS, C
    FOUASSIER, C
    HAGENMULLER, P
    [J]. PHYSICA B & C, 1980, 99 (1-4): : 81 - 85
  • [7] Guignard M, 2013, NAT MATER, V12, P74, DOI [10.1038/NMAT3478, 10.1038/nmat3478]
  • [8] A 1ST-PRINCIPLES THEORY OF FERROMAGNETIC PHASE-TRANSITIONS IN METALS
    GYORFFY, BL
    PINDOR, AJ
    STAUNTON, J
    STOCKS, GM
    WINTER, H
    [J]. JOURNAL OF PHYSICS F-METAL PHYSICS, 1985, 15 (06): : 1337 - 1386
  • [9] GREENS-FUNCTION AND A GENERALIZED LLOYD FORMULA FOR THE DENSITY OF STATES IN DISORDERED MUFFIN-TIN ALLOYS
    KAPRZYK, S
    BANSIL, A
    [J]. PHYSICAL REVIEW B, 1990, 42 (12): : 7358 - 7362
  • [10] Origins of Bistability and Na Ion Mobility Difference in P2-and O3-Na2/3Fe2/3Mn1/3O2 Cathode Polymorphs
    Katcho, Nebil A.
    Carrasco, Javier
    Saurel, Damien
    Gonzalo, Elena
    Han, Man
    Aguesse, Frederic
    Rojo, Teofilo
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (01)