synergy: a Python']Python library for calculating, analyzing and visualizing drug combination synergy

被引:31
|
作者
Wooten, David J. [1 ]
Albert, Reka [1 ]
机构
[1] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btaa826
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Combinations of multiple pharmacological agents can achieve a substantial benefit over treatment with single agents alone. Combinations that achieve 'more than the sum of their parts' are called synergistic. There have been many proposed frameworks to understand and quantify drug combination synergy with different assumptions and domains of applicability. We introduce here synergy, a Python library that (i) implements a broad array of popular synergy models, (ii) provides tools for evaluating confidence intervals and conducting power analysis and (iii) provides standardized tools to analyze and visualize drug combinations and their synergies and antagonisms.
引用
收藏
页码:1473 / 1474
页数:2
相关论文
共 50 条
  • [31] Novel framework for quantifying synergy in high-throughput drug combination cytotoxicity experiments
    Thurman, Robert
    Arthur, Bill
    CANCER RESEARCH, 2020, 80 (16)
  • [32] Antimalarial Drug Combination Predictions Using the Machine Learning Synergy Predictor (MLSyPred©) tool
    Roche-Lima, Abiel
    Rosado-Quinones, Angelica M.
    Feliu-Maldonado, Roberto A.
    Figueroa-Gispert, Maria Del Mar
    Diaz-Rivera, Jennifer
    Diaz-Gonzalez, Roberto G.
    Carrasquillo-Carrion, Kelvin
    Nieves, Brenda G.
    Colon-Lorenzo, Emilee E.
    Serrano, Adelfa E.
    ACTA PARASITOLOGICA, 2024, 69 (01) : 415 - 425
  • [33] Synergy evaluation by a pathway-pathway interaction network: a new way to predict drug combination
    Chen, Di
    Zhang, Huamin
    Lu, Peng
    Liu, Xianli
    Cao, Hongxin
    MOLECULAR BIOSYSTEMS, 2016, 12 (02) : 614 - 623
  • [34] SYNPRED: prediction of drug combination effects in cancer using different synergy metrics and ensemble learning
    Preto, Antonio J.
    Matos-Filipe, Pedro
    Mourao, Joana
    Moreira, Irina S.
    GIGASCIENCE, 2022, 11
  • [35] Statistical Assessment of Drug Synergy from In Vivo Combination Studies Using Mouse Tumor Models
    Mao, Binchen
    Guo, Sheng
    CANCER RESEARCH COMMUNICATIONS, 2023, 3 (10): : 2146 - 2157
  • [36] Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method-Letter
    Ashton, John C.
    CANCER RESEARCH, 2015, 75 (11) : 2400 - 2400
  • [37] SYNPRED: prediction of drug combination effects in cancer using different synergy metrics and ensemble learning
    Preto, Antonio J.
    Matos-Filipe, Pedro
    Mourao, Joana
    Moreira, Irina S.
    GIGASCIENCE, 2022, 11
  • [38] MFSynDCP: multi-source feature collaborative interactive learning for drug combination synergy prediction
    Yunyun Dong
    Yunqing Chang
    Yuxiang Wang
    Qixuan Han
    Xiaoyuan Wen
    Ziting Yang
    Yan Zhang
    Yan Qiang
    Kun Wu
    Xiaole Fan
    Xiaoqiang Ren
    BMC Bioinformatics, 25
  • [39] Coupled dynamics of drug synergy, gene expression, and alternative splicing in combination therapies in breast cancer
    Chen, Xintong
    Stolovitzky, Gustavo
    Losic, Bojan
    CANCER RESEARCH, 2016, 76
  • [40] MFSynDCP: multi-source feature collaborative interactive learning for drug combination synergy prediction
    Dong, Yunyun
    Chang, Yunqing
    Wang, Yuxiang
    Han, Qixuan
    Wen, Xiaoyuan
    Yang, Ziting
    Zhang, Yan
    Qiang, Yan
    Wu, Kun
    Fan, Xiaole
    Ren, Xiaoqiang
    BMC BIOINFORMATICS, 2024, 25 (01)