synergy: a Python']Python library for calculating, analyzing and visualizing drug combination synergy

被引:31
|
作者
Wooten, David J. [1 ]
Albert, Reka [1 ]
机构
[1] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btaa826
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Combinations of multiple pharmacological agents can achieve a substantial benefit over treatment with single agents alone. Combinations that achieve 'more than the sum of their parts' are called synergistic. There have been many proposed frameworks to understand and quantify drug combination synergy with different assumptions and domains of applicability. We introduce here synergy, a Python library that (i) implements a broad array of popular synergy models, (ii) provides tools for evaluating confidence intervals and conducting power analysis and (iii) provides standardized tools to analyze and visualize drug combinations and their synergies and antagonisms.
引用
收藏
页码:1473 / 1474
页数:2
相关论文
共 50 条
  • [21] In Vitro Elucidation of Drug Combination Synergy in Treatment of Pancreatic Ductal Adenocarcinoma
    Bush, Kevin T.
    Boichard, Amelie
    Tsigelny, Igor F.
    ANTICANCER RESEARCH, 2018, 38 (04) : 1967 - 1977
  • [22] Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method
    Chou, Ting-Chao
    CANCER RESEARCH, 2010, 70 (02) : 440 - 446
  • [23] A multi-task learning model for predicting drugs combination synergy by analyzing drug–drug interactions and integrated multi-view graph data
    Samar Monem
    Aboul Ella Hassanien
    Alaa H. Abdel-Hamid
    Scientific Reports, 13
  • [24] A multi-task learning model for predicting drugs combination synergy by analyzing drug-drug interactions and integrated multi-view graph data
    Monem, Samar
    Hassanien, Aboul Ella
    Abdel-Hamid, Alaa H.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [25] Essentiality and Transcriptome-Enriched Pathway Scores Predict Drug-Combination Synergy
    Li, Jin
    Huo, Yang
    Wu, Xue
    Liu, Enze
    Zeng, Zhi
    Tian, Zhen
    Fan, Kunjie
    Stover, Daniel
    Cheng, Lijun
    Li, Lang
    BIOLOGY-BASEL, 2020, 9 (09): : 1 - 18
  • [26] Synergy Finder Plus: Toward Better Interpretation and Annotation of Drug Combination Screening Datasets
    Shuyu Zheng
    Wenyu Wang
    Jehad Aldahdooh
    Alina Malyutina
    Tolou Shadbahr
    Ziaurrehman Tanoli
    Alberto Pessia
    Jing Tang
    Genomics,Proteomics & Bioinformatics, 2022, Proteomics & Bioinformatics2022 (03) : 587 - 596
  • [27] Investigation of the robustness of twomodels for assessing synergy in pre-clinical drug combination studies
    Whitehead, Anne
    Su, Ting-Li
    Thygesen, Helene
    Sperrin, Matthew
    Harbron, Chris
    PHARMACEUTICAL STATISTICS, 2013, 12 (05) : 300 - 308
  • [28] Biological coupling: Drug synergy, cross-resistance, and schedule effects in combination therapy
    Chen, Andrew
    Zopf, Christopher J.
    Wu, Jing-Tao
    Shyu, Wen Chyi
    Chakravarty, Arijit
    CANCER RESEARCH, 2015, 75
  • [29] Antimalarial Drug Combination Predictions Using the Machine Learning Synergy Predictor (MLSyPred©) tool
    Abiel Roche-Lima
    Angélica M. Rosado-Quiñones
    Roberto A. Feliu-Maldonado
    María Del Mar Figueroa-Gispert
    Jennifer Díaz-Rivera
    Roberto G. Díaz-González
    Kelvin Carrasquillo-Carrion
    Brenda G. Nieves
    Emilee E. Colón-Lorenzo
    Adelfa E. Serrano
    Acta Parasitologica, 2024, 69 : 415 - 425
  • [30] MARSY: a multitask deep-learning framework for prediction of drug combination synergy scores
    El Khili, Mohamed Reda
    Memon, Safyan Aman
    Emad, Amin
    BIOINFORMATICS, 2023, 39 (04)