Microwave sintering of ZnO nanopowders and characterization for gas sensing

被引:7
|
作者
Bai, Zikui [2 ]
Xie, Changsheng [1 ]
Zhang, Shunping [1 ]
Xu, Weilin [2 ]
Xu, Jie [2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Wuhan Text Univ, Minist Educ, Key Lab Green Proc & Functionalizat New Text Mat, Wuhan 430073, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2011年 / 176卷 / 02期
关键词
Microwave sintering; ZnO; Gas sensor; Impedance spectroscopy; THICK-FILM; CO; SENSOR; TEMPERATURE; SENSITIVITY; IMPROVEMENT; STABILITY; GROWTH;
D O I
10.1016/j.mseb.2010.11.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thick film gas sensors based on ZnO nanopowders were fabricated by using microwave sintering. The surface and cross section morphologies were characterized by field-emission scanning electron microscopy (FE-SEM). The stability of the microstructure was studied by impedance spectroscopy. The results showed that the shape of the nanoparticles was not changed through microwave sintering, and the thick films had the more dense microstructures than that by muffle oven sintering. The resistance-temperature characteristic and the responses to toluene, methanol and formaldehyde revealed that the microwave sintering technique could effectively control the growth of ZnO nanoparticles, realize the uniform sintering of thick film, gain the stable microstructure and improve the response of sensor. In addition, the formative mechanism of the thick film microstructure was proposed according to microwave sintering mechanism. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 50 条
  • [21] Photoluminescence and Chromaticity Properties of ZnO Nanopowders Made by a Microwave Hydrothermal Method
    Wolska, E.
    Sibera, D.
    Witkowski, B. S.
    Yatsunenko, S. A.
    Pelech, I.
    Narkiewicz, U.
    Godlewski, M.
    ACTA PHYSICA POLONICA A, 2011, 120 (05) : 908 - 910
  • [22] Photoluminescence in gas of (Ca) Mg-doped ZnO nanopowders
    Venhryn, Yu, I
    Pawluk, V. S.
    Serednytski, A. S.
    Popovych, D., I
    APPLIED NANOSCIENCE, 2022, 12 (04) : 1169 - 1174
  • [23] Photoluminescence in gas of (Ca) Mg-doped ZnO nanopowders
    Yu. I. Venhryn
    V. S. Pawluk
    A. S. Serednytski
    D. I. Popovych
    Applied Nanoscience, 2022, 12 : 1169 - 1174
  • [24] CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route
    Krishnakumar, T.
    Jayaprakash, R.
    Pinna, N.
    Donato, N.
    Bonavita, A.
    Micali, G.
    Neri, G.
    SENSORS AND ACTUATORS B-CHEMICAL, 2009, 143 (01): : 198 - 204
  • [25] ZnO:Ca nanopowders with enhanced CO2 sensing properties
    Dhahri, R.
    Hjiri, M.
    El Mir, L.
    Fazio, E.
    Neri, F.
    Barreca, F.
    Donato, N.
    Bonavita, A.
    Leonardi, S. G.
    Neri, G.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (25)
  • [26] Microwave sintering of ZnO at ultra high heating rates
    Xu, GF
    Lloyd, IK
    Carmel, Y
    Olorunyolemi, T
    Wilson, OC
    JOURNAL OF MATERIALS RESEARCH, 2001, 16 (10) : 2850 - 2858
  • [27] Microwave sintering of ZnO at ultra high heating rates
    Geng-fu Xu
    Isabel K. Lloyd
    Yuval Carmel
    Tayo Olorunyolemi
    Otto C. Wilson
    Journal of Materials Research, 2001, 16 : 2850 - 2858
  • [28] Microwave Sintering and Electric Properties of ZnO Varistor Ceramics
    He Xinxin
    Gan Guoyou
    Yan Jikang
    Du Jinghong
    Zhang Jiaming
    Liu Yichun
    Yi Jianhong
    Fan Maoyan
    DIANCHI ADVANCED MATERIALS FORUM 2013, 2014, 833 : 75 - +
  • [29] The sintering characteristics of pure tetrapod ZnO nanopowders prepared by thermal evaporation deposition (TED)
    Wu, Jun
    Li, Taotao
    Wang, Chao
    Zhu, Bailin
    Wu, Run
    Xie, Changsheng
    CERAMICS INTERNATIONAL, 2011, 37 (08) : 3469 - 3476
  • [30] One-Step Hydrothermal Synthesis and Characterization of ZnO nanopowders
    Wang, Yan-Xiang
    Li, Xiao-Yan
    Sun, Jian
    Hu, Yao-Hui
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 1928 - 1933