Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review

被引:14
|
作者
Diaz-Hurtado, Marcos [1 ]
Martinez-Heras, Eloy [2 ]
Solana, Elisabeth [2 ]
Casas-Roma, Jordi [1 ]
Llufriu, Sara [2 ]
Kanber, Baris [3 ,4 ,5 ]
Prados, Ferran [1 ,3 ,4 ,5 ]
机构
[1] Univ Oberta Catalunya, E Hlth Ctr, Barcelona, Spain
[2] Univ Barcelona, Hosp Clin Barcelona, Inst Invest Biomed August Pi & Sunyer IDIBAPS, Ctr Neuroimmunol,Lab Adv Imaging Neuroimmunol Dis, Barcelona, Spain
[3] UCL, Ctr Med Image Comp, Dept Med Phys & Biomed Engn, London, England
[4] UCL, Natl Inst Hlth Res Biomed Res Ctr, London, England
[5] UCL, Fac Brain Sci, UCL Inst Neurol, Dept Neuroinflammat,Queen Sq MS Ctr, London, England
关键词
Multiple sclerosis; MRI; Longitudinal; Lesion segmentation; Review; WHITE-MATTER; AUTOMATIC DETECTION; BRAIN; MRI; SUBTRACTION; TIME; IDENTIFICATION; FRAMEWORK; NETWORKS; ATROPHY;
D O I
10.1007/s00234-022-03019-3
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by demyelinating lesions that are often visible on magnetic resonance imaging (MRI). Segmentation of these lesions can provide imaging biomarkers of disease burden that can help monitor disease progression and the imaging response to treatment. Manual delineation of MRI lesions is tedious and prone to subjective bias, while automated lesion segmentation methods offer objectivity and speed, the latter being particularly important when analysing large datasets. Lesion segmentation can be broadly categorised into two groups: cross-sectional methods, which use imaging data acquired at a single time-point to characterise MRI lesions; and longitudinal methods, which use imaging data from the same subject acquired at two or more different time-points to characterise lesions over time. The main objective of longitudinal segmentation approaches is to more accurately detect the presence of new MS lesions and the growth or remission of existing lesions, which may be effective biomarkers of disease progression and treatment response. This paper reviews articles on longitudinal MS lesion segmentation methods published over the past 10 years. These are divided into traditional machine learning methods and deep learning techniques. PubMed articles using longitudinal information and comparing fully automatic two time point segmentations in any step of the process were selected. Nineteen articles were reviewed. There is an increasing number of deep learning techniques for longitudinal MS lesion segmentation that are promising to help better understand disease progression.
引用
收藏
页码:2103 / 2117
页数:15
相关论文
共 50 条
  • [21] High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis
    Schmierer, Klaus
    Parkes, Harold G.
    So, Po-Wah
    An, Shu F.
    Brandner, Sebastian
    Ordidge, Roger J.
    Yousry, Tarek A.
    Miller, David H.
    BRAIN, 2010, 133 : 858 - 867
  • [22] Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches
    Llado, Xavier
    Oliver, Arnau
    Cabezas, Mariano
    Freixenet, Jordi
    Vilanova, Joan C.
    Quiles, Ana
    Valls, Laia
    Ramio-Torrenta, Lluis
    Rovira, Alex
    INFORMATION SCIENCES, 2012, 186 (01) : 164 - 185
  • [23] Magnetic resonance imaging-based biomarkers of multiple sclerosis and neuromyelitis optica spectrum disorder: a systematic review and meta-analysis
    Mirmosayyeb, Omid
    Yazdan Panah, Mohammad
    Moases Ghaffary, Elham
    Vaheb, Saeed
    Ghoshouni, Hamed
    Shaygannejad, Vahid
    Pinter, Nandor K.
    JOURNAL OF NEUROLOGY, 2025, 272 (01)
  • [24] Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)
    Kontopodis, Eleftherios E.
    Papadaki, Efrosini
    Trivzakis, Eleftherios
    Maris, Thomas G.
    Simos, Panagiotis
    Papadakis, Georgios Z.
    Tsatsakis, Aristidis
    Spandidos, Demetrios A.
    Karantanas, Apostolos
    Marias, Kostas
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (04)
  • [25] Fuzzy Based Segmentation of Multiple Sclerosis Lesions in Magnetic Resonance Brain Images
    Bijar, Ahmad
    Khayati, Rasoul
    Penalver Benavent, Antonio
    2012 25TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2012,
  • [26] Magnetic resonance imaging markers for multiple sclerosis and neuromyelitis optica spectrum disorders
    Cao, Guanmei
    Xu, Siyao
    Xu, Xiaolu
    Zhuo, Zhizheng
    Duan, Yunyun
    Liu, Yaou
    NEUROLOGY AND CLINICAL NEUROSCIENCE, 2021, 9 (04): : 301 - 306
  • [27] Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions
    Elliott, Colm
    Wolinsky, Jerry S.
    Hauser, Stephen L.
    Kappos, Ludwig
    Barkhof, Frederik
    Bernasconi, Corrado
    Wei, Wei
    Belachew, Shibeshih
    Arnold, Douglas L.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 (14) : 1915 - 1925
  • [28] Sensitivity of portable low-field magnetic resonance imaging for multiple sclerosis lesions
    Arnold, Campbell
    Tu, Danni
    Okar, Serhat, V
    Nair, Govind
    By, Samantha
    Kawatra, Karan D.
    Robert-Fitzgerald, Timothy E.
    Desiderio, Lisa M.
    Schindler, Matthew K.
    Shinohara, Russell T.
    Reich, Daniel S.
    Stein, Joel M.
    NEUROIMAGE-CLINICAL, 2022, 35
  • [29] Longitudinal tracking of axonal loss using diffusion magnetic resonance imaging in multiple sclerosis
    Boonstra, Frederique M.
    Clough, Meaghan
    Strik, Myrte
    van der Walt, Anneke
    Butzkueven, Helmut
    White, Owen B.
    Law, Meng
    Fielding, Joanne
    Kolbe, Scott C.
    BRAIN COMMUNICATIONS, 2022, 4 (02)
  • [30] Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines
    Filippi, Massimo
    Preziosa, Paolo
    Banwell, Brenda L.
    Barkhof, Frederik
    Ciccarelli, Olga
    De Stefano, Nicola
    Geurts, Jeroen J. G.
    Paul, Friedemann
    Reich, Daniel S.
    Toosy, Ahmed T.
    Traboulsee, Anthony
    Wattjes, Mike P.
    Yousry, Tarek A.
    Gass, Achim
    Lubetzki, Catherine
    Weinshenker, Brian G.
    Rocca, Maria A.
    BRAIN, 2019, 142 : 1858 - 1875