The Cauchy interlacing theorem in simple Euclidean Jordan algebras and some consequences

被引:30
作者
Gowda, M. Seetharama [1 ]
Tao, J. [2 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Loyola Univ Maryland, Dept Math Sci, Baltimore, MD 21210 USA
关键词
Euclidean Jordan algebras; quadratic representations; min-max theorem of Hirzebruch; Cauchy interlacing theorem; Schur's theorem; Hadamard's inequality; Fan's trace inequality; LINEAR TRANSFORMATIONS; P-PROPERTIES; INEQUALITY; CONVEXITY; TRACE;
D O I
10.1080/03081080903346425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, based on the min-max theorem of Hirzebruch, we formulate and prove the Cauchy interlacing theorem in simple Euclidean Jordan algebras. As a consequence, we relate the inertias of an element and its principal components and extend some well-known matrix theory theorems and inequalities to the setting of simple Euclidean Jordan algebras.
引用
收藏
页码:65 / 86
页数:22
相关论文
共 24 条
[21]  
TIAN Y., 2000, Advances in Applied Clifford Algebras, V10, P61, DOI DOI 10.1007/BF03042010)
[22]   OSTROWSKI-SCHNEIDER INERTIA THEOREM [J].
WIMMER, HK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (01) :164-169
[23]  
[No title captured]
[24]  
[No title captured]