The Cauchy interlacing theorem in simple Euclidean Jordan algebras and some consequences

被引:30
作者
Gowda, M. Seetharama [1 ]
Tao, J. [2 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Loyola Univ Maryland, Dept Math Sci, Baltimore, MD 21210 USA
关键词
Euclidean Jordan algebras; quadratic representations; min-max theorem of Hirzebruch; Cauchy interlacing theorem; Schur's theorem; Hadamard's inequality; Fan's trace inequality; LINEAR TRANSFORMATIONS; P-PROPERTIES; INEQUALITY; CONVEXITY; TRACE;
D O I
10.1080/03081080903346425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, based on the min-max theorem of Hirzebruch, we formulate and prove the Cauchy interlacing theorem in simple Euclidean Jordan algebras. As a consequence, we relate the inertias of an element and its principal components and extend some well-known matrix theory theorems and inequalities to the setting of simple Euclidean Jordan algebras.
引用
收藏
页码:65 / 86
页数:22
相关论文
共 24 条
[1]   Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras [J].
Baes, Michel .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) :664-700
[2]  
Bapat R., 1997, Nonnegative matrices and applications
[3]  
Bhatia R., 1997, Springer Graduate Texts in Mathematics
[4]  
Dray T., 1998, ADV APPL CLIFFORD AL, V8, P341, DOI DOI 10.1007/BF03043104
[5]  
Fan K., 1957, Canadian J Math, V9, P298, DOI DOI 10.4153/CJM-1957-036-1
[6]  
Faraut J., 1994, Oxford Mathematical Monographs
[7]   Jordan-algebraic approach to convexity theorems for quadratic mappings [J].
Faybusovich, L. .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (02) :558-576
[8]   Some inertia theorems in Euclidean Jordan algebras [J].
Gowda, M. Seetharama ;
Tao, Jiyuan ;
Moldovan, Melania .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) :1992-2011
[9]   Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R .
MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (01) :109-123
[10]   Some P-properties for linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R ;
Tao, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :203-232