The Cauchy interlacing theorem in simple Euclidean Jordan algebras and some consequences

被引:27
|
作者
Gowda, M. Seetharama [1 ]
Tao, J. [2 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Loyola Univ Maryland, Dept Math Sci, Baltimore, MD 21210 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2011年 / 59卷 / 01期
关键词
Euclidean Jordan algebras; quadratic representations; min-max theorem of Hirzebruch; Cauchy interlacing theorem; Schur's theorem; Hadamard's inequality; Fan's trace inequality; LINEAR TRANSFORMATIONS; P-PROPERTIES; INEQUALITY; CONVEXITY; TRACE;
D O I
10.1080/03081080903346425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, based on the min-max theorem of Hirzebruch, we formulate and prove the Cauchy interlacing theorem in simple Euclidean Jordan algebras. As a consequence, we relate the inertias of an element and its principal components and extend some well-known matrix theory theorems and inequalities to the setting of simple Euclidean Jordan algebras.
引用
收藏
页码:65 / 86
页数:22
相关论文
共 50 条