Robustness of radial basis functions

被引:24
|
作者
Eickhoff, Ralf [1 ]
Rueckert, Ulrich [1 ]
机构
[1] Univ Paderborn, Heinz Nixfordf Inst Syst & Circuit Technol, D-33102 Paderborn, Germany
关键词
radial basis function; robustness; equicontinuity; sensitivity analysis; nanoelectronics;
D O I
10.1016/j.neucom.2006.04.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks are intended to be used in future nanoelectronic technology since these architectures seem to be robust to malfunctioning elements and noise in its inputs and parameters. In this work, the robustness of radial basis function networks is analyzed in order to operate in noisy and unreliable environment. Furthermore, upper bounds on the mean square error under noise contaminated parameters and inputs are determined if the network parameters are constrained. To achieve robuster neural network architectures fundamental methods are introduced to identify sensitive parameters and neurons. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2758 / 2767
页数:10
相关论文
共 50 条
  • [41] Implicit fitting using radial basis functions with ellipsoid constraint
    Li, Q
    Wills, D
    Phillips, R
    Viant, WJ
    Griffiths, JG
    Ward, J
    COMPUTER GRAPHICS FORUM, 2004, 23 (01) : 55 - 69
  • [42] On the use of radial basis functions in a local weighted meshless method
    Xiao, JR
    McCarthy, MA
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2182 - 2185
  • [43] SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS USING SPHERICAL RADIAL BASIS FUNCTIONS
    Pham, T. D.
    Tran, T.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 473 - 485
  • [44] Quasi-interpolation for data fitting by the radial basis functions
    Han, Xuli
    Hou, Muzhou
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 541 - 547
  • [45] Kernel based approximation in Sobolev spaces with radial basis functions
    Ma, Limin
    Wu, Zongmin
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (06) : 2229 - 2237
  • [46] Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions
    Rommel G. Regis
    Christine A. Shoemaker
    Journal of Global Optimization, 2005, 31 : 153 - 171
  • [47] Constrained global optimization of expensive black box functions using radial basis functions
    Regis, RG
    Shoemaker, CA
    JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (01) : 153 - 171
  • [48] On approximate cardinal preconditioning methods for solving PDEs with radial basis functions
    Brown, D
    Ling, L
    Kansa, E
    Levesley, J
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2005, 29 (04) : 343 - 353
  • [49] Learning Regularization Parameters of Radial Basis Functions in Embedded Likelihoods Space
    Menezes, Murilo
    Torres, Luiz C. B.
    Braga, Antonio P.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11805 : 281 - 292
  • [50] On condition number of meshless collocation method using radial basis functions
    Duan, Y
    Tan, YJ
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 141 - 147