Robustness of radial basis functions

被引:24
|
作者
Eickhoff, Ralf [1 ]
Rueckert, Ulrich [1 ]
机构
[1] Univ Paderborn, Heinz Nixfordf Inst Syst & Circuit Technol, D-33102 Paderborn, Germany
关键词
radial basis function; robustness; equicontinuity; sensitivity analysis; nanoelectronics;
D O I
10.1016/j.neucom.2006.04.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks are intended to be used in future nanoelectronic technology since these architectures seem to be robust to malfunctioning elements and noise in its inputs and parameters. In this work, the robustness of radial basis function networks is analyzed in order to operate in noisy and unreliable environment. Furthermore, upper bounds on the mean square error under noise contaminated parameters and inputs are determined if the network parameters are constrained. To achieve robuster neural network architectures fundamental methods are introduced to identify sensitive parameters and neurons. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2758 / 2767
页数:10
相关论文
共 50 条
  • [1] Comparison of Radial Basis Functions
    Rozhenko, A., I
    NUMERICAL ANALYSIS AND APPLICATIONS, 2018, 11 (03) : 220 - 235
  • [2] On robustness of radial basis function network with input perturbation
    Dey, Prasenjit
    Gopal, Madhumita
    Pradhan, Payal
    Pal, Tandra
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (02): : 523 - 537
  • [3] On robustness of radial basis function network with input perturbation
    Prasenjit Dey
    Madhumita Gopal
    Payal Pradhan
    Tandra Pal
    Neural Computing and Applications, 2019, 31 : 523 - 537
  • [4] Radial basis functions under tension
    Bouhamidi, A
    Le Méhauté, A
    JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) : 135 - 154
  • [5] DYNAMIC PROGRAMMING USING RADIAL BASIS FUNCTIONS
    Junge, Oliver
    Schreiber, Alex
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4439 - 4453
  • [6] Analysis of thick plates by radial basis functions
    A. J. M. Ferreira
    C. M. C. Roque
    Acta Mechanica, 2011, 217 : 177 - 190
  • [7] Plating thickness evaluation with the radial basis functions
    Kosaka, Daigo
    Kakishita, Kazuhiko
    Nara, Takaaki
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2020, 64 (1-4) : 1081 - 1089
  • [8] REGULARIZED MULTIDIMENSIONAL SCALING WITH RADIAL BASIS FUNCTIONS
    Jahan, Sohana
    Qi, Hou-Duo
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2016, 12 (02) : 543 - 563
  • [9] Biharmonic navigation using radial basis functions
    Fan, Xu-Qian
    Gong, Wenyong
    ROBOTICA, 2022, 40 (03) : 599 - 610
  • [10] Implicit Surface Reconstruction with Radial Basis Functions
    Yang, Jun
    Wang, Zhengning
    Zhu, Changqian
    Peng, Qiang
    COMPUTER VISION AND COMPUTER GRAPHICS, 2008, 21 : 5 - +