Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order

被引:75
|
作者
Alkahtani, B. S. T. [1 ]
Atangana, A. [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11989, Saudi Arabia
[2] Univ Orange Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
关键词
Shallow water model; Caputo-Fabrizio fractional derivative; Fixed-point theorem; Stability and uniqueness; EQUATION;
D O I
10.1016/j.chaos.2016.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to control the movement of waves on the area of shallow water, the newly derivative with fractional order proposed by Caputo and Fabrizio was used. To achieve this, we first proposed a transition from ordinary to fractional differential equation. We proved the existence and uniqueness of the coupled solutions of the modified system using the fixed-point theorem. We derive the special solution of the modified system using an iterative method. We proved the stability of the used method and also the uniqueness of the special solution. We presented the numerical simulations for different values of alpha. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:539 / 546
页数:8
相关论文
共 50 条
  • [31] Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative
    Zheng, Xiangcheng
    Wang, Hong
    Fu, Hongfei
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [32] Analysis of the proportional Caputo-Fabrizio derivative
    Akgul, Ali
    Baleanu, Dumitru
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (04): : 339 - 351
  • [33] Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model
    Algahtani, Obaid Jefain Julaighim
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 552 - 559
  • [34] Numerical Approach of Cattaneo Equation with Time Caputo-Fabrizio Fractional Derivative
    Soori, Zoleikha
    Aminataei, Azim
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (02): : 127 - 153
  • [35] Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales
    Mozyrska, Dorota
    Torres, Delfim F. M.
    Wyrwas, Malgorzata
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 32 : 168 - 176
  • [36] Existence of the solution for hybrid differential equation with Caputo-Fabrizio fractional derivative
    Chefnaj, Najat
    Hilal, Khalid
    Kajouni, Ahmed
    FILOMAT, 2023, 37 (07) : 2219 - 2226
  • [37] An Extension of the Picard Theorem to Fractional Differential Equations with a Caputo-Fabrizio Derivative
    Marasi, H. R.
    Joujehi, A. Soltani
    Aydi, H.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [38] A FRACTIONAL MODEL FOR THE DYNAMICS OF TUBERCULOSIS INFECTION USING CAPUTO-FABRIZIO DERIVATIVE
    Ullah, Saif
    Khan, Muhammad Altaf
    Farooq, Muhammad
    Hammouch, Zakia
    Baleanu, Dumitru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 975 - 993
  • [39] Fractional speeded up robust features detector with the Caputo-Fabrizio derivative
    J. E. Lavín-Delgado
    J. E. Solís-Pérez
    J. F. Gómez-Aguilar
    R. F. Escobar-Jiménez
    Multimedia Tools and Applications, 2020, 79 : 32957 - 32972
  • [40] A Fractional Model for the Dynamics of Smoking Tobacco Using Caputo-Fabrizio Derivative
    Melkamu, Belaynesh
    Mebrate, Benyam
    JOURNAL OF APPLIED MATHEMATICS, 2022, 2022