Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order

被引:75
|
作者
Alkahtani, B. S. T. [1 ]
Atangana, A. [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11989, Saudi Arabia
[2] Univ Orange Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
关键词
Shallow water model; Caputo-Fabrizio fractional derivative; Fixed-point theorem; Stability and uniqueness; EQUATION;
D O I
10.1016/j.chaos.2016.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to control the movement of waves on the area of shallow water, the newly derivative with fractional order proposed by Caputo and Fabrizio was used. To achieve this, we first proposed a transition from ordinary to fractional differential equation. We proved the existence and uniqueness of the coupled solutions of the modified system using the fixed-point theorem. We derive the special solution of the modified system using an iterative method. We proved the stability of the used method and also the uniqueness of the special solution. We presented the numerical simulations for different values of alpha. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:539 / 546
页数:8
相关论文
共 50 条
  • [21] Analytic study of pine wilt disease model with Caputo-Fabrizio fractional derivative
    Massoun, Youssouf
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 7072 - 7080
  • [22] Interval-valued variational programming problem with Caputo-Fabrizio fractional derivative
    Rayanki, Vivekananda
    Ahmad, Izhar
    Kummari, Krishna
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 17485 - 17510
  • [23] Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system
    Saad, K. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [24] A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative
    Baleanu, Dumitru
    Jajarmi, Amin
    Mohammadi, Hakimeh
    Rezapour, Shahram
    CHAOS SOLITONS & FRACTALS, 2020, 134
  • [25] Random Caputo-Fabrizio fractional differential inclusions
    Abbas, Said
    Benchohra, Mouffak
    Henderson, Johnny
    MATHEMATICAL MODELLING AND CONTROL, 2021, 1 (02): : 102 - 111
  • [26] Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative
    Liu, Yang
    Fan, Enyu
    Yin, Baoli
    Li, Hong
    AIMS MATHEMATICS, 2020, 5 (03): : 1729 - 1744
  • [27] A Fractional Order Investigation of Smoking Model Using Caputo-Fabrizio Differential Operator
    Anjam, Yasir Nadeem
    Shafqat, Ramsha
    Sarris, Ioannis E.
    Ur Rahman, Mati
    Touseef, Sajida
    Arshad, Muhammad
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [28] Dynamic response of thermoelasticity based on Green-Lindsay theory and Caputo-Fabrizio fractional-order derivative
    Guo, Ying
    Shi, Pengjie
    Ma, Jianjun
    Liu, Fengjun
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [29] Dynamics of Ebola virus transmission with vaccination control using Caputo-Fabrizio Fractional-order derivative analysis
    Yunus, Akeem Olarewaju
    Olayiwola, Morufu Oyedunsi
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (03)
  • [30] Transmission Dynamics of Fractional Order Brucellosis Model Using Caputo-Fabrizio Operator
    Peter, Olumuyiwa James
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 2020