Non-Gaussian wave functionals in Coulomb gauge Yang-Mills theory

被引:63
作者
Campagnari, Davide R. [1 ]
Reinhardt, Hugo [1 ]
机构
[1] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 10期
关键词
CONFINEMENT; RENORMALIZATION;
D O I
10.1103/PhysRevD.82.105021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A general method to treat non-Gaussian vacuum wave functionals in the Hamiltonian formulation of a quantum field theory is presented. By means of Dyson-Schwinger techniques, the static Green functions are expressed in terms of the kernels arising in the Taylor expansion of the exponent of the vacuum wave functional. These kernels are then determined by minimizing the vacuum expectation value of the Hamiltonian. The method is applied to Yang-Mills theory in Coulomb gauge, using a vacuum wave functional whose exponent contains up to quartic terms in the gauge field. An estimate of the cubic and quartic interaction kernels is given using as input the gluon and ghost propagators found with a Gaussian wave functional.
引用
收藏
页数:21
相关论文
共 44 条
  • [1] Infrared behavior of three-point functions in Landau gauge Yang-Mills theory
    Alkofer, R.
    Huber, M. Q.
    Schwenzer, K.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2009, 62 (04): : 761 - 781
  • [2] BALL JS, 1980, PHYS REV D, V22, P2550, DOI 10.1103/PhysRevD.22.2550
  • [3] Coulomb-Gauge Gluon Propagator and the Gribov Formula
    Burgio, G.
    Quandt, M.
    Reinhardt, H.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (03)
  • [4] CAMPAGNARI D, ARXIV09104548
  • [5] Perturbation theory in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Campagnari, Davide R.
    Reinhardt, Hugo
    Weber, Axel
    [J]. PHYSICAL REVIEW D, 2009, 80 (02):
  • [6] Topological susceptibility in SU(2) Yang-Mills theory in the Hamiltonian approach in Coulomb gauge
    Campagnari, Davide R.
    Reinhardt, Hugo
    [J]. PHYSICAL REVIEW D, 2008, 78 (08):
  • [7] OPERATOR ORDERING AND FEYNMAN-RULES IN GAUGE-THEORIES
    CHRIST, NH
    LEE, TD
    [J]. PHYSICAL REVIEW D, 1980, 22 (04): : 939 - 958
  • [8] Cucchieri A, 2004, J HIGH ENERGY PHYS
  • [9] Three-point vertices in Landau-gauge Yang-Mills theory
    Cucchieri, Attilio
    Maas, Axel
    Mendes, Tereza
    [J]. PHYSICAL REVIEW D, 2008, 77 (09):
  • [10] THE S-MATRIX IN QUANTUM ELECTRODYNAMICS
    DYSON, FJ
    [J]. PHYSICAL REVIEW, 1949, 75 (11): : 1736 - 1755