Can Dynamic Functional Connectivity Be Used to Distinguish Between Resting-State and Motor Imagery in EEG-BCIs?

被引:1
作者
Rodrigues, Paula G. [1 ,2 ]
Stefano Filho, Carlos A. [2 ,3 ]
Takahata, Andre K. [1 ,2 ]
Suyama, Ricardo [1 ,2 ]
Attux, Romis [2 ,4 ]
Castellano, Gabriela [2 ,3 ]
Sato, Joao R. [5 ]
Nasuto, Slawomir J. [6 ]
Soriano, Diogo C. [1 ,2 ]
机构
[1] Fed Univ ABC UFABC, Ctr Engn Modeling & Appl Social Sci, Sao Bernardo Do Campo, SP, Brazil
[2] Brazilian Inst Neurosci & Neurotechnol BRAINN, Campinas, Brazil
[3] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, Neurophys Grp, Campinas, SP, Brazil
[4] Univ Estadual Campinas, Dept Comp Engn & Ind Automat DCA, Campinas, Brazil
[5] Univ Fed Abc, Ctr Math Comp & Cognit, Santo Andre, SP, Brazil
[6] Univ Reading, Sch Biol Sci, Brain Embodiment Lab, Biomed Engn, Reading, Berks, England
来源
COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 2 | 2022年 / 1016卷
基金
巴西圣保罗研究基金会;
关键词
Brain-computer interface; Dynamic functional connectivity; Electroencephalography; Motor imagery; Time-varying graphs;
D O I
10.1007/978-3-030-93413-2_57
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Graph theory has been widely and efficiently applied to characterize brain functioning, ranging from the diagnosis of pathologies (e.g. depression, Alzheimer, schizophrenia, etc.) to investigations of cognitive processes in neuroscience. Recently, the use of graph-based strategies through functional connectivity (FC) analysis has shown to be an interesting option for feature extraction in motor imagery brain-computer interfaces (MI-BCIs) - an alternative communication system that does not require the use of classical biological efferent pathways, mapping brain signals directly to control external assistive devices. Although FC has been used in such context, the dynamics of FC under motor imagery has rarely been taken into account, which outlines an essential requirement for online BCI operation. Therefore, this study aims to evaluate the applicability of dynamic functional connectivity (dFC) to differentiate resting-state and motor imagery in electroencephalography (EEG)-based BCI. We evaluated the classification performance of classical markers, as defined by event-related desynchronization, static FC and the dynamic FC scenario. The analysis includes two different similarity criteria for estimating the FC matrix and four different graph-based metrics applied to a representative EEG dataset with 35 subjects. The obtained results point to the potential and accompanying challenges of using dFC in the context of MI-BCIs, in addition to providing insights concerning the motor network activity organization during motor imagery.
引用
收藏
页码:688 / 699
页数:12
相关论文
共 21 条
  • [1] Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study
    Babiloni, Claudio
    Del Percio, Claudio
    Lizio, Roberta
    Noce, Giuseppe
    Lopez, Susanna
    Soricelli, Andrea
    Ferri, Raffaele
    Nobili, Flavio
    Arnaldi, Dario
    Fama, Francesco
    Aarsland, Dag
    Orzi, Francesco
    Buttinelli, Carla
    Giubilei, Franco
    Onofrj, Marco
    Stocchi, Fabrizio
    Stirpe, Paola
    Fuhr, Peter
    Gschwandtner, Ute
    Ransmayr, Gerhard
    Garn, Heinrich
    Fraioli, Lucia
    Pievani, Michela
    Frisoni, Giovanni B.
    D'Antonio, Fabrizia
    De Lena, Carlo
    Guntekin, Bahar
    Hanoglu, Lutfu
    Bazar, Erol
    Yener, Gorsev
    Emek-Savas, Derya Durusu
    Triggiani, Antonio Ivano
    Franciotti, Raffaella
    Taylor, John Paul
    Vacca, Laura
    De Pandis, Maria Francesca
    Bonanni, Laura
    [J]. NEUROBIOLOGY OF AGING, 2018, 65 : 18 - 40
  • [2] EEG datasets for motor imagery brain-computer interface
    Cho, Hohyun
    Ahn, Minkyu
    Ahn, Sangtae
    Kwon, Moonyoung
    Jun, Sung Chan
    [J]. GIGASCIENCE, 2017, 6 (07): : 1 - 8
  • [3] Cohen MX, 2014, ISS CLIN COGN NEUROP, P1
  • [4] Brain computer interface control via functional connectivity dynamics
    Daly, Ian
    Nasuto, Slawomir J.
    Warwick, Kevin
    [J]. PATTERN RECOGNITION, 2012, 45 (06) : 2123 - 2136
  • [5] Diez P., 2018, SMART WHEELCHAIRS BR
  • [6] Fornito A., 2016, Fundamentals of Brain Network Analysis, DOI [10.1016/C2012-0-06036-X, DOI 10.1016/C2012-0-06036-X]
  • [7] Organizing motor imageries
    Hanakawa, Takashi
    [J]. NEUROSCIENCE RESEARCH, 2016, 104 : 56 - 63
  • [8] Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?
    Jalili, Mahdi
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [9] EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy
    Lee, Min-Ho
    Kwon, O-Yeon
    Kim, Yong-Jeong
    Kim, Hong-Kyung
    Lee, Young-Eun
    Williamson, John
    Fazli, Siamac
    Lee, Seong-Whan
    [J]. GIGASCIENCE, 2019, 8 (05):
  • [10] Newman M., 2018, Networks