Selection of Relevant Electrodes Based on Temporal Similarity for Classification of Motor Imagery Tasks

被引:2
作者
Kirar, Jyoti Singh [1 ]
Choudhary, Ayesha [1 ]
Agrawal, R. K. [1 ]
机构
[1] Jawaharlal Nehru Univ, New Delhi, India
来源
PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017 | 2017年 / 10597卷
关键词
Motor imagery; Brain computer interface; Common spatial pattern; Spectral clustering;
D O I
10.1007/978-3-319-69900-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selection of relevant electrodes is of prime importance for developing efficient motor imagery Brain Computer Interface devices. In this paper, we propose a novel spectral clustering based on temporal similarity of electrodes to select a reduced set of relevant electrodes for classification of motor imagery tasks. Further, Stationary common spatial pattern method in conjunction with Composite kernel Support Vector Machine is utilized to develop a decision model. Experimental results demonstrate improvement in classification accuracy in comparison to variants of the common spatial pattern method on publicly available datasets. Friedman statistical test shows that the proposed method significantly outperformed the variants of the common spatial pattern method.
引用
收藏
页码:96 / 102
页数:7
相关论文
共 50 条
  • [41] Motor imagery task classification using intelligent algorithm with prominent trial selection
    Ghosh, Rajdeep
    Kumar, Vikas
    Sinha, Nidul
    Biswas, Saroj Kumar
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) : 1501 - 1510
  • [42] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chu, Chaoqin
    Xiao, Qinkun
    Chang, Leran
    Shen, Jianing
    Zhang, Na
    Du, Yu
    Xing, Heng
    Gao, Hui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45747 - 45767
  • [43] Differential Evolution with Temporal Difference Q-Learning Based Feature Selection for Motor Imagery EEG Data
    Bhattacharyya, Saugat
    Rakshit, Pratyusha
    Konar, Amit
    Tibarewala, D. N.
    Das, Swagatam
    Nagar, Atulya K.
    2013 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE, COGNITIVE ALGORITHMS, MIND, AND BRAIN (CCMB), 2013, : 138 - 145
  • [44] EEG channel selection based on sequential backward floating search for motor imagery classification
    Tang, Chao
    Gao, Tianyi
    Li, Yuanhao
    Chen, Badong
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [45] Feature subset and time segment selection for the classification of EEG data based motor imagery
    Wang, Jie
    Feng, Zuren
    Ren, Xiaodong
    Lu, Na
    Luo, Jing
    Sun, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 61
  • [46] Generic Channels Selection in Motor Imagery-Based BCI
    Qiu, Zhaoyang
    Jin, Jing
    Zhang, Yu
    Wang, Xingyu
    ADVANCES IN COGNITIVE NEURODYNAMICS (V), 2016, : 413 - 419
  • [47] EEG temporal information-based 1-D convolutional neural network for motor imagery classification
    Chaoqin Chu
    Qinkun Xiao
    Leran Chang
    Jianing Shen
    Na Zhang
    Yu Du
    Heng Xing
    Hui Gao
    Multimedia Tools and Applications, 2023, 82 : 45747 - 45767
  • [48] Statistical Wavelets With Harmony Search- Based Optimal Feature Selection of EEG Signals for Motor Imagery Classification
    Mohdiwale, Samrudhi
    Sahu, Mridu
    Sinha, G. R.
    Bhateja, Vikrant
    IEEE SENSORS JOURNAL, 2021, 21 (13) : 14263 - 14271
  • [49] Feature Selection Methods Applied to Motor Imagery Task Classification
    Ramos, Alimed Celecia
    Hernandez, Rene Gonzalez
    Vellasco, Marley
    2016 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2016,
  • [50] EEG Features Extraction and Classification Methods in Motor Imagery Based Brain Computer Interface
    Malass, Mahmoud
    Tabbal, Judie
    El Falou, Wassim
    2019 FIFTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2019, : 196 - 199