Selection of Relevant Electrodes Based on Temporal Similarity for Classification of Motor Imagery Tasks

被引:2
|
作者
Kirar, Jyoti Singh [1 ]
Choudhary, Ayesha [1 ]
Agrawal, R. K. [1 ]
机构
[1] Jawaharlal Nehru Univ, New Delhi, India
来源
PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017 | 2017年 / 10597卷
关键词
Motor imagery; Brain computer interface; Common spatial pattern; Spectral clustering;
D O I
10.1007/978-3-319-69900-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selection of relevant electrodes is of prime importance for developing efficient motor imagery Brain Computer Interface devices. In this paper, we propose a novel spectral clustering based on temporal similarity of electrodes to select a reduced set of relevant electrodes for classification of motor imagery tasks. Further, Stationary common spatial pattern method in conjunction with Composite kernel Support Vector Machine is utilized to develop a decision model. Experimental results demonstrate improvement in classification accuracy in comparison to variants of the common spatial pattern method on publicly available datasets. Friedman statistical test shows that the proposed method significantly outperformed the variants of the common spatial pattern method.
引用
收藏
页码:96 / 102
页数:7
相关论文
共 50 条
  • [1] Channel Selection based Similarity Measurement for Motor Imagery Classification
    Chen, Shiyi
    Sun, Yaoru
    Wang, Haoran
    Pang, Zilong
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 542 - 548
  • [2] Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG
    Jyoti Singh Kirar
    R. K. Agrawal
    Journal of Medical Systems, 2018, 42
  • [3] Relevant Feature Selection from a Combination of Spectral-Temporal and Spatial Features for Classification of Motor Imagery EEG
    Kirar, Jyoti Singh
    Agrawal, R. K.
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (05)
  • [4] Subject-based dipole selection for decoding motor imagery tasks
    Li, Ming-ai
    Dong, Yu-xin
    Sun, Yan-jun
    Yang, Jin-fu
    Duan, Li-juan
    NEUROCOMPUTING, 2020, 402 : 195 - 208
  • [5] Study of Electroencephalogram Feature Extraction and Classification of Three Tasks of Motor Imagery
    Zhao, Zhiyuan
    Yu, Jiali
    Wu, Yongqiang
    Li, Juan
    Guo, Hao
    Zhang, Hongmiao
    Sun, Lining
    2017 2ND INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM), 2017, : 492 - 497
  • [6] An information fusion scheme based common spatial pattern method for classification of motor imagery tasks
    Wang, Jie
    Feng, Zuren
    Lu, Na
    Sun, Lei
    Luo, Jing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 46 : 10 - 17
  • [7] LSTM-Based EEG Classification in Motor Imagery Tasks
    Wang, Ping
    Jiang, Aimin
    Liu, Xiaofeng
    Shang, Jing
    Zhang, Li
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (11) : 2086 - 2095
  • [8] Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata
    Liu, Aiming
    Chen, Kun
    Liu, Quan
    Ai, Qingsong
    Xie, Yi
    Chen, Anqi
    SENSORS, 2017, 17 (11):
  • [9] Electroencephalography Based Motor Imagery Classification Using Unsupervised Feature Selection
    Al Shiam, Abdullah
    Islam, Md Rabiul
    Tanaka, Toshihisa
    Molla, Md Khademul Islam
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 239 - 246
  • [10] Optimal channel and frequency band-based feature selection for motor imagery electroencephalogram classification
    Meng, Ming
    Dong, Zhichao
    Gao, Yunyuan
    She, Qingshan
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (02) : 670 - 679