Indirect printing of hierarchical patient-specific scaffolds for meniscus tissue engineering

被引:6
作者
Costa, Joao B. [1 ,2 ,3 ]
Silva-Correia, Joana [1 ,2 ]
Pina, Sandra [1 ,2 ]
Morais, Alain da Silva [1 ,2 ]
Vieira, Silvia [1 ,2 ]
Pereira, Helder [1 ,2 ,4 ,5 ]
Espregueira-Mendes, Joao [1 ,2 ,6 ,7 ,8 ]
Reis, Rui L. [1 ,2 ,3 ]
Oliveira, Joaquim M. [1 ,2 ,3 ]
机构
[1] Univ Minho, 3Bs Res Grp, I3Bs Res Inst Biomat Biodegradables & Biomimet, Headquarters European Inst Excellence Tissue Engn, AvePk, P-4805017 Barco Gmr, Portugal
[2] ICVS 3Bs PT Govt Associate Lab, Braga, Portugal
[3] Univ Minho, Discoveries Ctr Regenerat & Precis Med, Avepk, P-4805017 Barco, Guimaraes, Portugal
[4] Murcia Madrid FIFA Med Ctr Excellence, Ripoll & De Prado Sports Clin, Murcia, Spain
[5] Ctr Hosp Povoa de Varzim, Dept Orthoped, Vila Do Conde, Portugal
[6] FIFA Med Ctr Excellence, Clin Dragao, Espregueira Mendes Sports Ctr, Porto, Portugal
[7] Dom Henrique Res Ctr, Porto, Portugal
[8] Univ Minho, Dept Orthoped, Braga, Portugal
关键词
Patient-specific; Indirect printing; Hierarchical; Silk fibroin; Enzymatic-cross-linking; Meniscus; SILK SCAFFOLDS; INDIRECT FABRICATION; IN-VITRO; POROSITY; BIOMATERIALS; REGENERATION; REPLACEMENT; DEGRADATION; HYDROGELS; TEARS;
D O I
10.1007/s42242-019-00050-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The complex meniscus tissue plays a critical role in the knee. The high susceptibility to injury has led to an intense pursuit for better tissue engineering regenerative strategies, where scaffolds play a major role. In this study, indirect printed hierarchical multilayered scaffolds composed by a silk fibroin (SF) upper layer and an 80/20 (w/w) ratio of SF/ionic-doped beta-tricalcium phosphate (TCP) bottom layer were developed. Furthermore, a comparative analysis between two types of scaffolds produced using different SF concentrations, i.e., 8% (w/v) (Hi8) and 16% (w/v) (Hi16) was performed. In terms of architecture and morphology, the produced scaffolds presented homogeneous porosity in both layers and no differences were observed when comparing both scaffolds. A decrease in terms of mechanical performance of the scaffolds was observed when SF concentration decreased from 16 to 8% (w/v). Hi16 revealed a static compressive modulus of 0.66 +/- 0.05 MPa and dynamical mechanical properties ranging from 2.17 +/- 0.25 to 3.19 +/- 0.38 MPa. By its turn, Hi8 presented a compressive modulus of 0.27 +/- 0.08 MPa and dynamical mechanical properties ranging from 1.03 +/- 0.08 MPa to 1.56 +/- 0.13 MPa. In vitro bioactivity studies showed formation of apatite crystals onto the surface of Hi8 and Hi16 bottom layers. Human meniscus cells (hMCs) and human primary osteoblasts were cultured separately onto the top layer (SF8 and SF16) and bottom layer ( SF8/TCP and SF16/TCP) of the hierarchical scaffolds Hi8 and Hi16, respectively. Both cell types showed good adhesion and proliferation as denoted by the live/dead staining, Alamar Blue assay and DNA quantification analysis. Subcutaneous implantation in mice revealed weak inflammation and scaffold's integrity. The hierarchical indirect printed SF scaffolds can be promising candidate for meniscus TE scaffolding applications due their suitable mechanical properties, good biological performance and possibility of being applied in a patient-specific approach.
引用
收藏
页码:225 / 241
页数:17
相关论文
共 50 条
[41]   3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering [J].
Xu, Zhenyu ;
Li, Ke ;
Zhou, Kui ;
Li, Shuiyuan ;
Chen, Hongwei ;
Zeng, Jiaqi ;
Hu, Rugang .
FIBERS AND POLYMERS, 2023, 24 (01) :275-283
[42]   3D Printing Decellularized Extracellular Matrix to Design Biomimetic Scaffolds for Skeletal Muscle Tissue Engineering [J].
Baiguera, Silvia ;
Del Gaudio, Costantino ;
Di Nardo, Paolo ;
Manzari, Vittorio ;
Carotenuto, Felicia ;
Teodori, Laura .
BIOMED RESEARCH INTERNATIONAL, 2020, 2020
[43]   3D printing of resorbable poly(propylene fumarate) tissue engineering scaffolds [J].
Childers, Erin P. ;
Wang, Martha O. ;
Becker, Matthew L. ;
Fisher, John P. ;
Dean, David .
MRS BULLETIN, 2015, 40 (02) :119-126
[44]   Applications of patient-specific 3D printing in medicine [J].
Heller, M. ;
Bauer, H-K. ;
Goetze, E. ;
Gielisch, M. ;
Roth, K. E. ;
Maier, G. S. ;
Drees, P. ;
Dorweiler, B. ;
Ghazy, A. ;
Neufurth, M. ;
Mueller, W. E. G. ;
Schoerder, H. C. ;
Wang, X. H. ;
Vahl, C-F ;
Al-Nawas, B. .
INTERNATIONAL JOURNAL OF COMPUTERIZED DENTISTRY, 2016, 19 (04) :323-339
[45]   Indirect 3D printing CDHA scaffolds with hierarchical porous structure to promote osteoinductivity and bone regeneration [J].
Dai, Wenling ;
Li, Shikui ;
Jia, Hengxing ;
Zhao, Xingchen ;
Liu, Chenxin ;
Zhou, Changchun ;
Xiao, Yumei ;
Guo, Likun ;
Fan, Yujiang ;
Zhang, Xingdong .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 207 :295-307
[46]   Applications and prospects of indirect 3D printing technology in bone tissue engineering [J].
Qiao, Mingxin ;
Wu, Weimin ;
Tang, Wen ;
Zhao, Yifan ;
Wang, Jian ;
Pei, Xibo ;
Zhang, Bowen ;
Wan, Qianbing .
BIOMATERIALS SCIENCE, 2025, 13 (03) :587-605
[47]   3D printing of ceramic scaffolds for engineering of bone tissue [J].
Barinov S.M. ;
Vakhrushev I.V. ;
Komlev V.S. ;
Mironov A.V. ;
Popov V.K. ;
Teterina A.Y. ;
Fedotov A.Y. ;
Yarygin K.N. .
Inorganic Materials: Applied Research, 2015, 6 (04) :316-322
[48]   Estimating patient-specific soft-tissue properties in a TKA knee [J].
Ewing, Joseph A. ;
Kaufman, Michelle K. ;
Hutter, Erin E. ;
Granger, Jeffrey F. ;
Beal, Matthew D. ;
Piazza, Stephen J. ;
Siston, Robert A. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2016, 34 (03) :435-443
[49]   Smart biomaterials in healthcare: Breakthroughs in tissue engineering, immunomodulation, patient-specific therapies, and biosensor applications [J].
Raheem, Ansheed ;
Mandal, Kalpana ;
Biswas, Swarup ;
Ahari, Amir ;
Najafabadi, Alireza Hassani ;
Farhadi, Neda ;
Zehtabi, Fatemeh ;
Gangrade, Ankit ;
Mecwan, Marvin ;
Maity, Surjendu ;
Sharma, Saurabh ;
Arputharaj, Joseph Nathanael ;
Khan, Pearlin Amaan ;
Udduttula, Anjaneyulu ;
Kouchehbaghi, Negar Hosseinzadeh ;
Khorsandi, Danial ;
Vasita, Rajesh ;
Haghniaz, Reihaneh ;
Herculano, Rondinelli Donizetti ;
John, Johnson V. ;
Kim, Hyeok ;
Dokmeci, Mehmet Remzi ;
Popat, Ketul C. ;
Zhu, Yangzhi ;
Manivasagam, Geetha .
APPLIED PHYSICS REVIEWS, 2025, 12 (01)
[50]   Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds [J].
Zhang, Bin ;
Cristescu, Rodica ;
Chrisey, Douglas B. ;
Narayan, Roger J. .
INTERNATIONAL JOURNAL OF BIOPRINTING, 2020, 6 (01) :28-42