Experimental study on thermal management of lithium-ion battery with graphite powder based composite phase change materials covering the whole climatic range

被引:35
|
作者
Wang, Zichen [1 ,2 ,3 ]
Du, Changqing [1 ,3 ]
Qi, Rui [1 ,3 ]
Wang, Yijin [1 ,3 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Hebei Normal Univ, Coll Career Technol, Shijiazhuang 050024, Hebei, Peoples R China
[3] Foshan Xianhu Lab, Adv Energy Sci & Technol Guangdong Lab, Foshan 528200, Peoples R China
关键词
Lithium-ion battery; Phase change; Thermal management; Temperature dependence; Whole climatic range; HEAT-PIPE; PERFORMANCE; SYSTEM; PARAFFIN; PACK; PCM;
D O I
10.1016/j.applthermaleng.2022.119072
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to ensure the normal operation of lithium-ion battery in any climate environment, it is necessary to explore the temperature dependence of lithium-ion battery performance, and adopt an effective and low energy thermal management system to maintain the temperature of lithium-ion battery within the normal operating temperature range. In this paper, the temperature dependence of heat generation behavior and charge-discharge performance of lithium-ion battery was studied, and the critical temperature of heat preservation and preheating process was determined. On this basis, graphite powder/paraffin composite phase change material and graphite powder/paraffin/nickel foam ternary composite phase change material with optimized composition were pre -pared. The thermal management experiment of large-capacity rectangular lithium iron phosphate battery covering the whole climatic range was carried out. The performance of the following thermal management modes was compared: air natural convection, paraffin, graphite powder/paraffin composite, graphite powder/ paraffin/nickel foam ternary composite. The experiment showed that the necessary heat dissipation of lithium-ion battery was needed at 20 degrees C and 40 degrees C to avoid exceeding the upper limit of normal working temperature. The charge-discharge performance of lithium-ion battery was very sensitive to low temperature environment, especially the battery endurance and charge-discharge capacity. Both graphite powder/paraffin and graphite powder/paraffin/nickel foam composites can effectively control the surface temperature rise of lithium-ion battery, and keep the surface temperature above 0 degrees C for at least 40 min in the extremely cold environment of-20 degrees C. They also had similar heating efficiency. However, the ternary composite had better temperature ho-mogeneity in both the high temperature environment of 40 degrees C and the extremely cold environment of-20 degrees C. The maximum temperature difference of ternary composite in the preheating process was 21.43% lower than that of binary composite.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Thermal management of the lithium-ion battery by the composite PCM-Fin structures
    Sun, Zhiqiang
    Fan, Ruijin
    Yan, Fang
    Zhou, Tian
    Zheng, Nianben
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 145
  • [32] A study of nanoparticle shape in water/alumina/boehmite nanofluid flow in the thermal management of a lithium-ion battery under the presence of phase-change materials
    Jiang, Yu
    Wang, Xiaomei
    Mahmoud, Mustafa Z.
    Elkotb, Mohamed Abdelghany
    Baloo, Lavania
    Li, Zhixiong
    Heidarshenas, Behzad
    JOURNAL OF POWER SOURCES, 2022, 539
  • [33] Parameter optimization and sensitivity analysis of a Lithium-ion battery thermal management system integrated with composite phase change material
    Li, Chenqing
    Ding, Yan
    Zhou, Zhiyu
    Jin, Yibin
    Ren, Xingyu
    Cao, Chengyang
    Hu, Hongyun
    APPLIED THERMAL ENGINEERING, 2023, 228
  • [34] Challenges in incorporating phase change materials into thermal control units for lithium-ion battery cooling
    Farouk, Naeim
    Alotaibi, Abdullah Alhumaidi
    Alshahri, Abdullah H.
    Almitani, Khalid H.
    JOURNAL OF ENERGY STORAGE, 2022, 49
  • [35] Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials
    Chen, Mingyi
    Zhu, Minghao
    Zhang, Siyu
    Ouyang, Dongxu
    Weng, Jingwen
    Wei, Ruichao
    Chen, Yin
    Zhao, Luyao
    Wang, Jian
    APPLIED THERMAL ENGINEERING, 2023, 235
  • [36] Numerical investigation of lithium-ion battery thermal management using fins embedded in phase change materials
    Turkakar, Goker
    Hos, Ismail
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (02): : 1105 - 1116
  • [37] Experimental investigation of lithium-ion battery thermal management for electric vehicles using mini channels cold plate and phase change material
    Hassan, Mohanad F.
    Khalifa, Abdul Hadi N.
    Hamad, Ahmed J.
    APPLIED THERMAL ENGINEERING, 2025, 267
  • [38] A simplified thermal model for a lithium-ion battery pack with phase change material thermal management system
    Lamrani, Bilal
    Lebrouhi, Badr Eddine
    Khattari, Youness
    Kousksou, Tarik
    JOURNAL OF ENERGY STORAGE, 2021, 44
  • [39] Numerical optimization for a phase change material based lithium-ion battery thermal management system
    Wang, Shuping
    Zhang, Danfeng
    Li, Changhao
    Wang, Junkai
    Zhang, Jiaqing
    Cheng, Yifeng
    Mei, Wenxin
    Cheng, Siyuan
    Qin, Peng
    Duan, Qiangling
    Sun, Jinhua
    Wang, Qingsong
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [40] Recent research progress on phase change materials for thermal management of lithium-ion batteries
    Zhi, Maoyong
    Fan, Rong
    Yang, Xiong
    Zheng, Lingling
    Yue, Shan
    Liu, Quanyi
    He, Yuanhua
    JOURNAL OF ENERGY STORAGE, 2022, 45