A Bayesian nonparametric meta-analysis model

被引:15
作者
Karabatsos, George [1 ]
Talbott, Elizabeth [2 ]
Walker, Stephen G. [3 ]
机构
[1] Univ Illinois, Dept Educ Psychol, Program Measurement Evaluat Stat & Assessments, Coll Educ, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Special Educ, Coll Educ, Chicago, IL 60607 USA
[3] Univ Texas Austin, Div Stat & Sci Computat, Austin, TX 78712 USA
关键词
meta-analysis; Bayesian nonparametric regression; meta-regression; effect sizes; publication bias; ANTISOCIAL-BEHAVIOR; PSYCHOPATHOLOGY; ADOLESCENCE;
D O I
10.1002/jrsm.1117
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a meta-analysis, it is important to specify a model that adequately describes the effect-size distribution of the underlying population of studies. The conventional normal fixed-effect and normal random-effects models assume a normal effect-size population distribution, conditionally on parameters and covariates. For estimating the mean overall effect size, such models may be adequate, but for prediction, they surely are not if the effect-size distribution exhibits non-normal behavior. To address this issue, we propose a Bayesian nonparametric meta-analysis model, which can describe a wider range of effect-size distributions, including unimodal symmetric distributions, as well as skewed and more multimodal distributions. We demonstrate our model through the analysis of real meta-analytic data arising from behavioral-genetic research. We compare the predictive performance of the Bayesian nonparametric model against various conventional and more modern normal fixed-effects and random-effects models. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:28 / 44
页数:17
相关论文
共 64 条
  • [31] SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES
    GELFAND, AE
    SMITH, AFM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) : 398 - 409
  • [32] Gelfand AE, 2010, CH CRC HANDB MOD STA, P495
  • [33] Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper)
    Gelman, Andrew
    [J]. BAYESIAN ANALYSIS, 2006, 1 (03): : 515 - 533
  • [34] Gelman Andrew, 2004, Bayesian data analysis, V2nd
  • [35] George EI, 1997, STAT SINICA, V7, P339
  • [36] Geyer CJ, 2011, CH CRC HANDB MOD STA, P3
  • [37] Geyer CJ., 1992, Statist. Sci, V7, P473
  • [38] RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA USING GIBBS SAMPLING
    GILKS, WR
    WANG, CC
    YVONNET, B
    COURSAGET, P
    [J]. BIOMETRICS, 1993, 49 (02) : 441 - 453
  • [39] PROBABILITY OF OBTAINING NEGATIVE ESTIMATES OF HERITABILITY
    GILL, JL
    JENSEN, EL
    [J]. BIOMETRICS, 1968, 24 (03) : 517 - &
  • [40] Glass G. V., 1976, Educational Researcher, V10, P3, DOI [10.2307/1174772ISSN0536-1036, DOI 10.3102/0013189X005010003]