Singular Integrals on Ahlfors-David Regular Subsets of the Heisenberg Group

被引:8
作者
Chousionis, Vasilis [1 ]
Mattila, Pertti [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Singular integrals; Heisenberg group; SELF-SIMILAR SETS;
D O I
10.1007/s12220-010-9139-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate certain singular integral operators with Riesz-type kernels on s-dimensional Ahlfors-David regular subsets of Heisenberg groups. We show that L-2-boundedness, and even a little less, implies that s must be an integer and the set can be approximated at some arbitrarily small scales by homogeneous subgroups. It follows that the operators cannot be bounded on many self-similar fractal subsets of Heisenberg groups.
引用
收藏
页码:56 / 77
页数:22
相关论文
共 19 条
  • [1] [Anonymous], 1995, Geometry of Sets and Measures in Euclidean Spaces
  • [2] Self-similar sets in doubling spaces
    Balogh, Zoltan M.
    Rohner, Heiner
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (04) : 1275 - 1297
  • [3] Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
  • [4] Capogna L., 2007, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
  • [5] David G, 1993, Mathematical Surveys and Monographs, V38
  • [6] Deng D., 2009, Lecture Notes in Math, V1966
  • [7] Federer H., 1969, Geometric Measure Theory. Classics in Mathematics
  • [8] Mattila P, 2005, MATH SCAND, V97, P298
  • [9] The Cauchy integral, analytic capacity, and uniform rectifiability
    Mattila, P
    Melnikov, MS
    Verdera, J
    [J]. ANNALS OF MATHEMATICS, 1996, 144 (01) : 127 - 136
  • [10] On geometric properties of harmonic Lip(1)-capacity
    Mattila, P
    Paramonov, PV
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (02) : 469 - 491