Nonparametric regression in a statistical modified Helmholtz equation using the Fourier spectral regularization

被引:7
作者
Dang Duc Trong [1 ]
To Duc Khanh [1 ]
Nguyen Huy Tuan [1 ]
Nguyen Dang Minh [2 ]
机构
[1] Univ Sci, Fac Math & Comp Sci, Hochiminh City, Vietnam
[2] Univ Sci, Ctr Math Sci, Hochiminh City, Vietnam
关键词
15A29; 62G08; 47A52; modified Helmholtz equation; statistical inverse problems; ill-posed problem; nonparametric regression; CAUCHY-PROBLEM;
D O I
10.1080/02331888.2014.946929
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we deal with the Cauchy problem for the modified Helmholtz equation. We consider two models of data: the bounded variance model and the i.i.d. model. The trigonometric estimators of nonparametric regression is applied to solve the problem. In addition, the general forms of regularization parameter corresponding to the pointwise mean squared error and the mean integrated squared error are discussed in detail. The minimax rate convergence corresponding to the bounded variance model is also presented. In the i.i.d. model, we construct the asymptotic confidence interval for the solution of the problem. Finally, we give some numerical experiments and discuss the obtained results.
引用
收藏
页码:267 / 290
页数:24
相关论文
共 27 条
[1]  
Alquier P, 2011, LECT NOTES STAT, V203
[2]  
[Anonymous], 1996, INTRO MATH THEORY IN
[3]  
[Anonymous], 2000, J STAT SOFTW
[4]   Asymptotics for spectral regularization estimators in statistical inverse problems [J].
Bissantz, Nicolai ;
Holzmann, Hajo .
COMPUTATIONAL STATISTICS, 2013, 28 (02) :435-453
[5]   Statistical inference for inverse problems [J].
Bissantz, Nicolai ;
Holzmann, Hajo .
INVERSE PROBLEMS, 2008, 24 (03)
[6]   Sharp adaptation for inverse problems with random noise [J].
Cavalier, L ;
Tsybakov, A .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (03) :323-354
[7]   Nonparametric statistical inverse problems [J].
Cavalier, L. .
INVERSE PROBLEMS, 2008, 24 (03)
[8]  
Duffy D.G., 2015, ST ADV MATH
[9]  
Eubank R.L., 1999, NONPARAMETRIC REGRES, V2nd, DOI DOI 10.1201/9781482273144
[10]   A statistical approach to the cauchy problem for the Laplace equation [J].
Golubev, G ;
Khasminskii, R .
STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET, 2001, 36 :419-433