Analysis of electroluminescence from silicon heterojunction solar cells

被引:4
|
作者
Brueggemann, R. [1 ]
Olibet, S. [2 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[2] EPFL STI IMT NE PV LAB, CH-2000 Neuchatel, Switzerland
来源
PROCEEDINGS OF INORGANIC AND NANOSTRUCTURED PHOTOVOLTAICS | 2010年 / 2卷 / 01期
关键词
Electroluminescence; Photoluminescence; Solar cell; Diffusion length; Interface defects; PHOTOLUMINESCENCE; LUMINESCENCE;
D O I
10.1016/j.egypro.2010.07.005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The density of defects at the interface between the amorphous and crystalline silicon layers limits the photovoltaic device performance of amorphous silicon /crystalline silicon heterojunction solar cells. We investigate the electroluminescence properties of these devices for a variation of interface defect densities. Electroluminescence efficiency, dark saturation current density and open-circuit voltage are related via Planck's generalized law and the current-voltage relations. These analytical relations are reproduced by the full numerical simulation of the solar cell behavior, especially the exponential dependence of the electroluminescence efficiency on the open-circuit voltage. Experimentally we show that a planar silicon heterojunction solar cell with high open-circuit voltage achieves an electroluminescence efficiency around 0.13%. (C) 2010 Published by Elsevier Ltd
引用
收藏
页码:19 / 26
页数:8
相关论文
共 50 条
  • [1] Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells
    Ahmed, Nuha
    Zhang, Lei
    Sriramagiri, Gowri
    Das, Ujjwal
    Hegedus, Steven
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (14)
  • [2] Classification of Silicon Solar Cells Using Electroluminescence Texture Analysis
    Bastari, Alessandro
    Bruni, Andrea
    Cristalli, Cristina
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 1722 - 1727
  • [3] Analysis of SiOx layers for silicon heterojunction solar cells
    Bian, Jieyu
    Zhang, Liping
    Meng, Fanying
    Liu, Zhengxin
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2017, 218 : 46 - 50
  • [4] Anomaly detection in electroluminescence images of heterojunction solar cells
    Korovin, Alexey
    Vasilev, Artem
    Egorov, Fedor
    Saykin, Dmitry
    Terukov, Evgeny
    Shakhray, Igor
    Zhukov, Leonid
    Budennyy, Semen
    SOLAR ENERGY, 2023, 259 : 130 - 136
  • [5] Analysis of edge losses on silicon heterojunction half solar cells
    Gerenton, Felix
    Eymard, Julien
    Harrison, Samuel
    Clerc, Raphael
    Munoz, Delfina
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 204 (204)
  • [6] Surface recombination analysis in silicon-heterojunction solar cells
    Barrio, R.
    Gandia, J. J.
    Carabe, J.
    Gonzalez, N.
    Torres, I.
    Munoz, D.
    Voz, C.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) : 282 - 286
  • [7] Heterojunction Silicon Microwire Solar Cells
    Gharghi, Majid
    Fathi, Ehsanollah
    Kante, Boubacar
    Sivoththaman, Siva
    Zhang, Xiang
    NANO LETTERS, 2012, 12 (12) : 6278 - 6282
  • [8] Modeling of Silicon Heterojunction Solar Cells
    Luppina, Pietro
    Lugli, Paolo
    Goodnick, Stephen M.
    2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2015,
  • [9] Electroluminescence from amorphous silicon/crystalline silicon solar cells and its temperature dependence
    Brueggemann, Rudolf
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 6, 2012, 9 (06): : 1496 - 1498
  • [10] Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells
    Ballif, Christophe
    De Wolf, Stefaan
    Descoeudres, Antoine
    Holman, Zachary C.
    ADVANCES IN PHOTOVOLTAICS, PT 3, 2014, 90 : 73 - 120