Fluorescent Molecules as Transceiver Nanoantennas: The First Practical and High-Rate Information Transfer over a Nanoscale Communication Channel based on FRET

被引:26
作者
Kuscu, Murat [1 ]
Kiraz, Alper [2 ]
Akan, Ozgur B. [1 ]
机构
[1] Koc Univ, Dept Elect & Elect Engn, NWCL, TR-34450 Istanbul, Turkey
[2] Koc Univ, Dept Phys, Optofluid & Nanoopt Res Lab, TR-34450 Istanbul, Turkey
基金
欧洲研究理事会;
关键词
D O I
10.1038/srep07831
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanocommunications via Forster Resonance Energy Transfer (FRET) is a promising means of realising collaboration between photoactive nanomachines to implement advanced nanotechnology applications. The method is based on exchange of energy levels between fluorescent molecules by the FRET phenomenon which intrinsically provides a virtual nanocommunication link. In this work, further to the extensive theoretical studies, we demonstrate the first information transfer through a FRET-based nanocommunication channel. We implement a digital communication system combining macroscale transceiver instruments and a bulk solution of fluorophore nanoantennas. The performance of the FRET-based Multiple-Input and Multiple-Output (MIMO) nanocommunication channel between closely located mobile nanoantennas in the sample solution is evaluated in terms of Signal-to-Noise Ratio (SNR) and Bit Error Rate (BER) obtained for the transmission rates of 50 kbps, 150 kbps and 250 kbps. The results of the performance evaluation are very promising for the development of high-rate and reliable molecular communication networks at nanoscale.
引用
收藏
页数:6
相关论文
共 21 条
[1]   Nanonetworks: A New Frontier in Communications [J].
Akyildiz, Ian F. ;
Jornet, Josep Miquel ;
Pierobon, Massimiliano .
COMMUNICATIONS OF THE ACM, 2011, 54 (11) :84-89
[2]   Making molecular machines work [J].
Browne, Wesley R. ;
Feringa, Ben L. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :25-35
[3]   Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy [J].
Elangovan, M ;
Wallrabe, H ;
Chen, Y ;
Day, RN ;
Barroso, M ;
Periasamy, A .
METHODS, 2003, 29 (01) :58-73
[4]   *ZWISCHENMOLEKULARE ENERGIEWANDERUNG UND FLUORESZENZ [J].
FORSTER, T .
ANNALEN DER PHYSIK, 1948, 2 (1-2) :55-75
[5]   Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy [J].
Gordon, GW ;
Berry, G ;
Liang, XH ;
Levine, B ;
Herman, B .
BIOPHYSICAL JOURNAL, 1998, 74 (05) :2702-2713
[6]   A single-molecule optical transistor [J].
Hwang, J. ;
Pototschnig, M. ;
Lettow, R. ;
Zumofen, G. ;
Renn, A. ;
Goetzinger, S. ;
Sandoghdar, V. .
NATURE, 2009, 460 (7251) :76-80
[7]   FRET imaging [J].
Jares-Erijman, EA ;
Jovin, TM .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1387-1395
[8]  
Jun SI, 2000, TETRAHEDRON LETT, V41, P471
[9]   Study on the determination of molecular distance in organic dye mixtures using dual beam thermal lens technique [J].
Kurian, A ;
George, SD ;
Nampoori, VPN ;
Vallabhan, CPG .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2005, 61 (13-14) :2799-2802
[10]   Coverage and throughput analysis for FRET-based mobile molecular sensor/actor nanonetworks [J].
Kuscu, Murat ;
Akan, Ozgur B. .
NANO COMMUNICATION NETWORKS, 2014, 5 (1-2) :45-53