Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids

被引:172
作者
Choe, HJ [1 ]
Kim, H [1 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
Navier-Stokes equations; nonhomogeneous incompressible fluid; strong solution; vacuum; continuation theorem;
D O I
10.1081/PDE-120021191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids in Omega subset of R-3. Deriving higher a priori estimates independent of the lower bounds of the density, we prove the existence and uniqueness of local strong solutions to the initial value problem (for Omega = R-3) or the initial boundary value problem (for Omega subset ofsubset of R-3) even though the initial density vanishes in an open subset of Omega, i.e., an initial vacuum exists. As an immediate consequence of the a priori estimates, we obtain a continuation theorem for the local strong solutions.
引用
收藏
页码:1183 / 1201
页数:19
相关论文
共 19 条
[1]  
ANTONTSEV SA, 1973, LECT NOTES USSR NOVO
[2]  
ANTONTSEV SN, 1990, BOUNDARY VALUE PROBL
[3]  
CHO Y, UNIQUE SOLVABILITY D
[4]  
CHOE HJ, STRONG SOLUTIONS NAV
[5]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[6]  
Galdi G.P., 1994, INTRO MATH THEORY NA, VI
[7]  
KAZHIKHO.AV, 1974, DOKL AKAD NAUK SSSR+, V216, P1008
[9]  
LADYZHENSKAYA O., 1978, J SOVIET MATH, V9, P697, DOI DOI 10.1007/BF01085325
[10]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS