Speckle denoising based on a deep learning via conditional generative adversarial network in digital holographic interferometry

被引:22
作者
Fang, Qiang [1 ]
Xia, Haiting [1 ,2 ]
Song, Qinghe [3 ]
Zhang, Meijuan [1 ]
Guo, Rongxin [1 ]
Montresor, Silvio [4 ]
Picart, Pascal [4 ,5 ]
机构
[1] Kunming Univ Sci & Technol, Fac Civil Engn & Mech, Yunnan Key Lab Disaster Reduct Civil Engn, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Civil Aviat & Aeronaut, Kunming 650500, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
[4] Le Mans Univ, Grad Sch IA GS, Inst Acoust, Lab Acoust,Univ Mans,CNRS 6613, Ave Olivier Messiaen, F-72085 Le Mans, France
[5] Ecole Natl Super Ingn Mans, ENSIM, Rue Aristote, F-72085 Le Mans 09, France
来源
OPTICS EXPRESS | 2022年 / 30卷 / 12期
基金
中国国家自然科学基金;
关键词
NOISE-REDUCTION; ALGORITHM;
D O I
10.1364/OE.459213
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Speckle denoising can improve digital holographic interferometry phase measurements but may affect experimental accuracy. A deep-learning-based speckle denoising algorithm is developed using a conditional generative adversarial network. Two subnetworks, namely discriminator and generator networks, which refer to the U-Net and DenseNet layer structures are used to supervise network learning quality and denoising. Datasets obtained from speckle simulations are shown to provide improved noise feature extraction. The loss function is designed by considering the peak signal-to-noise ratio parameters to improve efficiency and accuracy. The proposed method thus shows better performance than other denoising algorithms for processing experimental strain data from digital holography. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:20666 / 20683
页数:18
相关论文
共 44 条
  • [1] Robust phase unwrapping algorithm based on enhanced denoising and fringe quality improvement routines
    Alcaraz, Pedro Enrique
    Ketchum, Remington Spencer
    Blanche, Pierre-Alexandre
    [J]. OSA CONTINUUM, 2021, 4 (02): : 633 - 649
  • [3] DeepLSR: a deep learning approach for laser speckle reduction
    Bobrow, Taylor L.
    Mahmood, Faisal
    Inserni, Miguel
    Durr, Nicholas J.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2019, 10 (06) : 2869 - 2882
  • [4] Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography
    Choi, Gunho
    Ryu, DongHun
    Jo, YoungJu
    Kim, Young Seo
    Park, Weisun
    Min, Hyun-seok
    Park, YongKeun
    [J]. OPTICS EXPRESS, 2019, 27 (04): : 4927 - 4943
  • [5] Christopher M, 2020, INVEST OPHTH VIS SCI, V61
  • [6] Image denoising with block-matching and 3D filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IMAGE PROCESSING: ALGORITHMS AND SYSTEMS, NEURAL NETWORKS, AND MACHINE LEARNING, 2006, 6064
  • [7] Optical coherence tomography image denoising using a generative adversarial network with speckle modulation
    Dong, Zhao
    Liu, Guoyan
    Ni, Guangming
    Jerwick, Jason
    Duan, Lian
    Zhou, Chao
    [J]. JOURNAL OF BIOPHOTONICS, 2020, 13 (04)
  • [8] Goodman J. W., 2020, SPECKLE PHENOMENA OP, V2nd ed.
  • [9] DIGITAL IMAGE FORMATION FROM ELECTRONICALLY DETECTED HOLOGRAMS
    GOODMAN, JW
    LAWRENCE, RW
    [J]. APPLIED PHYSICS LETTERS, 1967, 11 (03) : 77 - +
  • [10] Batch denoising of ESPI fringe patterns based on convolutional neural network
    Hao, Fugui
    Tang, Chen
    Xu, Min
    Lei, Zhenkun
    [J]. APPLIED OPTICS, 2019, 58 (13) : 3338 - 3346