Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae

被引:15
作者
Deaner, Matthew [1 ]
Alper, Hal S. [1 ,2 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, 200 E Dean Keeton St Stop C0400, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Cellular & Mol Biol, 2500 Speedway Ave, Austin, TX 78712 USA
关键词
CRISPR; Cas9; dCas9; Cpf1; Saccharomyces cerevisiae; metabolic engineering; synthetic biology; GUIDE RNA; INTEGRATION; MULTIPLEX; PATHWAYS; SCREENS; TOOLKIT; GENES; STEP;
D O I
10.1093/femsyr/foz076
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Although only 6 years old, the CRISPR system has blossomed into a tool for rapid, on-demand genome engineering and gene regulation in Saccharomyces cerevisiae. In this minireview, we discuss fundamental CRISPR technologies, tools to improve the efficiency and capabilities of gene targeting, and cutting-edge techniques to explore gene editing and transcriptional regulation at genome scale using pooled approaches. The focus is on applications to metabolic engineering with topics including development of techniques to edit the genome in multiplex, tools to enable large numbers of genetic modifications using pooled single-guide RNA libraries and efforts to enable programmable transcriptional regulation using endonuclease-null Cas enzymes.
引用
收藏
页数:10
相关论文
共 53 条
[1]  
[Anonymous], 2015, Nat. Methods
[2]  
[Anonymous], 2018, MULTIIF OVER FIBER B
[3]  
[Anonymous], 2011, Biology Is Technology: The Promise, Peril, and New Business of Engineering Life
[4]   A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae [J].
Apel, Amanda Reider ;
d'Espaux, Leo ;
Wehrs, Maren ;
Sachs, Daniel ;
Li, Rachel A. ;
Tong, Gary J. ;
Garber, Megan ;
Nnadi, Oge ;
Zhuang, William ;
Hillson, Nathan J. ;
Keasling, Jay D. ;
Mukhopadhyay, Aindrila .
NUCLEIC ACIDS RESEARCH, 2017, 45 (01) :496-508
[5]   Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision [J].
Bao, Zehua ;
HamediRad, Mohammad ;
Xue, Pu ;
Xiao, Han ;
Tasan, Ipek ;
Chao, Ran ;
Liang, Jing ;
Zhao, Huimin .
NATURE BIOTECHNOLOGY, 2018, 36 (06) :505-+
[6]   Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae [J].
Bao, Zehua ;
Xiao, Han ;
Lang, Jing ;
Zhang, Lu ;
Xiong, Xiong ;
Sun, Ning ;
Si, Tong ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (05) :585-594
[7]   Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering [J].
Bengtsson, Oskar ;
Jeppsson, Marie ;
Sonderegger, Marco ;
Parachin, Nadia Skorupa ;
Sauer, Uwe ;
Hahn-Hagerdal, Baerbel ;
Gorwa-Grauslund, Mane-F. .
YEAST, 2008, 25 (11) :835-847
[8]   Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in Saccharomyces cerevisiae [J].
Deaner, Matthew ;
Holzman, Allison ;
Alper, Hal S. .
BIOTECHNOLOGY JOURNAL, 2018, 13 (09)
[9]   Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae [J].
Deaner, Matthew ;
Mejia, Julio ;
Alper, Hal S. .
ACS SYNTHETIC BIOLOGY, 2017, 6 (10) :1931-1943
[10]   Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae [J].
Deaner, Matthew ;
Alper, Hal S. .
METABOLIC ENGINEERING, 2017, 40 :14-22