A conjecture on the lower bound of the signed edge domination number of 2-connected graphs

被引:0
作者
Feng, Xing [1 ]
Ge, Jun [2 ,3 ]
机构
[1] Jiangxi Univ Sci & Technol, Fac Sci, Ganzhou, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu, Sichuan, Peoples R China
[3] Sichuan Normal Univ, Laurent Math Ctr, Chengdu, Sichuan, Peoples R China
关键词
Domination; Signed edge domination function; Signed edge domination number;
D O I
10.1016/j.dam.2021.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note, we construct an infinite family of counterexamples to a conjecture on the lower bound of the signed edge domination number of 2-connected graphs. We propose two problems in order to revise the original conjecture. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 45
页数:4
相关论文
共 48 条
  • [41] Further Progress on the Total Roman {2}-Domination Number of Graphs
    Abdollahzadeh Ahangar, Hossein
    Chellali, Mustapha
    Hajjari, Maryam
    Sheikholeslami, Seyed Mahmoud
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 1111 - 1119
  • [42] The annihilation number does not bound the 2-domination number from the above
    Yue, Jun
    Zhang, Shizhen
    Zhu, Yiping
    Klavzar, Sandi
    Shi, Yongtang
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [43] An improved upper bound on the double Roman domination number of graphs with minimum degree at least two
    Khoeilar, Rana
    Karami, Hossein
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    DISCRETE APPLIED MATHEMATICS, 2019, 270 : 159 - 167
  • [44] Forcing Subsets of Connected Co-Independent Hop Domination in the Edge Corona and Lexicographic Product of Graphs
    Calanza, Yves Dave L.
    Rara, Helen M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1597 - 1612
  • [45] Reducing the domination number of (P3 + kP2)-free graphs via one edge contraction
    Galby, E.
    Mann, F.
    Ries, B.
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 205 - 210
  • [46] A tight upper bound for 2-rainbow domination in generalized Petersen graphs
    Wang, Yue-Li
    Wu, Kuo-Hua
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2178 - 2188
  • [47] 2-power domination number for Knödel graphs and its application in communication networks
    Sundara Rajan, R.
    Arulanand, S.
    Prabhu, S.
    Rajasingh, Indra
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (06) : 3157 - 3168
  • [48] Liar's Domination Number of Generalized Petersen Graphs P(n, 1) and P(n, 2)
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Lu, Kai
    UTILITAS MATHEMATICA, 2012, 88 : 317 - 335