The limit set of subgroups of arithmetic groups in PSL(2, C)q x PSL(2, R)r

被引:1
作者
Geninska, Slavyana [1 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse, France
关键词
Fuchsian groups; arithmetic lattices; limit sets; RANK SYMMETRIC-SPACES; FUCHSIAN-GROUPS; MODULAR EMBEDDINGS; LENGTH SPECTRUM; SURFACE;
D O I
10.4171/GGD/256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider subgroups Gamma of arithmetic groups in the product PSL(2, C)(q) x PSL(2, R)(r) with q + r >= 2 and their limit set. We prove that the projective limit set of a nonelementary finitely generated. consists of exactly one point if and only if one and hence all projections of. to the simple factors of PSL(2, C)(q) x PSL(2, R)(r) are subgroups of arithmetic Fuchsian or Kleinian groups. Furthermore, we study the topology of the whole limit set of Gamma. In particular, we give a necessary and sufficient condition for the limit set to be homeomorphic to a circle. This result connects the geometric properties of. with its arithmetic ones.
引用
收藏
页码:1047 / 1099
页数:53
相关论文
共 29 条
[1]   Patterson-Sullivan theory in higher rank symmetric spaces [J].
Albuquerque, P .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (01) :1-28
[2]  
[Anonymous], 1981, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
[3]  
Beardon A. F., 1995, GRADUATE TEXTS MATH, V91
[4]  
Benoist Y, 1997, GEOM FUNCT ANAL, V7, P1, DOI 10.1007/PL00001613
[5]  
BURGER M, 1993, INT MATH RES NOTICES, V7, P217
[6]   MODULAR EMBEDDINGS FOR SOME NON-ARITHMETIC FUCHSIAN-GROUPS [J].
COHEN, P ;
WOLFART, J .
ACTA ARITHMETICA, 1990, 56 (02) :93-110
[7]   Zeta functions that hear the shape of a Riemann surface [J].
Cornelissen, Gunther ;
Marcolli, Matilde .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (05) :619-632
[8]   A criterion of conjugacy for Zariski dense subgroups [J].
Dal'bo, F ;
Kim, I .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08) :647-650
[9]  
Dal'bo F, 1999, BOL SOC BRAS MAT, V30, P199, DOI 10.1007/BF01235869
[10]  
Dal'Bo F., 2008, ACT SEM THEOR SPECTR, V25, P105