The computation of the Betti numbers of an elliptic space is a NP-hard problem

被引:3
作者
Garvín, A [1 ]
Lechuga, L [1 ]
机构
[1] Univ Malaga, Escuela Univ Politecn, Dept Matemat Aplicada, E-29071 Malaga, Spain
关键词
rational homotopy; complexity; NP-hard problem;
D O I
10.1016/S0166-8641(02)00340-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S a 1-connected space such that pi* (S) circle times Q and H*(S; Q) are both finite-dimensional. Then, using the Sullivan model as a codification for S, we prove that the computation of the Betti numbers of S is a NP-hard problem. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:235 / 238
页数:4
相关论文
共 6 条
[1]   DIOPHANTINE EQUATIONS, HILBERT SERIES, AND UNDECIDABLE SPACES [J].
ANICK, DJ .
ANNALS OF MATHEMATICS, 1985, 122 (01) :87-112
[2]  
ANICK DJ, 1986, LECT NOTES APPL MATH, V114, P1
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[4]   FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES [J].
BROWN, EH .
ANNALS OF MATHEMATICS, 1957, 65 (01) :1-20
[5]  
Felix Y., 2000, GRADUATE TEXTS MATH, V205
[6]   Complexity in rational homotopy [J].
Lechuga, L ;
Murillo, A .
TOPOLOGY, 2000, 39 (01) :89-94