Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals

被引:298
|
作者
Abel, Brooks A. [1 ,2 ]
Snyder, Rachel L. [1 ,2 ]
Coates, Geoffrey W. [1 ,2 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] Cornell Univ, Baker Lab, Joint Ctr Energy Storage Res, Ithaca, NY 14853 USA
关键词
LIVING CARBOCATIONIC POLYMERIZATION; RING-OPENING POLYMERIZATION; CATIONIC-POLYMERIZATION; WASTE; COPOLYMERIZATION; CATALYSTS; POLYMERS; MONOMERS;
D O I
10.1126/science.abh0626
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying plastics capable of chemical recycling to monomer (CRM) is the foremost challenge in creating a sustainable circular plastic economy. Polyacetals are promising candidates for CRM but lack useful tensile strengths owing to the low molecular weights produced using current uncontrolled cationic ring-opening polymerization (CROP) methods. Here, we present reversible-deactivation CROP of cyclic acetals using a commercial halomethyl ether initiator and an indium(III) bromide catalyst. Using this method, we synthesize poly(1,3-dioxolane) (PDXL), which demonstrates tensile strength comparable to some commodity polyolefins. Depolymerization of PDXL using strong acid catalysts returns monomer in near-quantitative yield and even proceeds from a commodity plastic waste mixture. Our efficient polymerization method affords a tough thermoplastic that can undergo selective depolymerization to monomer.
引用
收藏
页码:783 / +
页数:123
相关论文
共 50 条
  • [1] Reversible-deactivation radical polymerization of cyclic ketene acetals
    Jackson, Alexander W.
    POLYMER CHEMISTRY, 2020, 11 (21) : 3525 - 3545
  • [2] From radical to reversible-deactivation radical polymerization of ethylene
    Baffle, F.
    Sinniger, L.
    Lansalot, M.
    Monteil, V.
    D'Agosto, F.
    PROGRESS IN POLYMER SCIENCE, 2025, 162
  • [3] Aerobic mechanochemical reversible-deactivation radical polymerization
    Feng, Haoyang
    Chen, Zhe
    Li, Lei
    Shao, Xiaoyang
    Fan, Wenru
    Wang, Chen
    Song, Lin
    Matyjaszewski, Krzysztof
    Pan, Xiangcheng
    Wang, Zhenhua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Telechelic polymers from reversible-deactivation radical polymerization for biomedical applications
    Vinciguerra, Daniele
    Tran, Johanna
    Nicolas, Julien
    CHEMICAL COMMUNICATIONS, 2018, 54 (03) : 228 - 240
  • [5] Synthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization
    Ghadban, Ali
    Albertin, Luca
    POLYMERS, 2013, 5 (02) : 431 - 526
  • [6] Threshold Particle Diameters in Miniemulsion Reversible-Deactivation Radical Polymerization
    Tobita, Hidetaka
    POLYMERS, 2011, 3 (04): : 1944 - 1971
  • [7] Organo-Cobalt Complexes in Reversible-Deactivation Radical Polymerization
    Benchaphanthawee, Wachara
    Peng, Chi-How
    CHEMICAL RECORD, 2021, 21 (12): : 3628 - 3647
  • [8] Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications
    Corrigan, Nathaniel
    Jung, Kenward
    Moad, Graeme
    Hawker, Craig J.
    Matyjaszewski, Krzysztof
    Boyer, Cyrille
    PROGRESS IN POLYMER SCIENCE, 2020, 111
  • [9] Living and controlled reversible-activation polymerization (RAP) on the way to reversible-deactivation radical polymerization (RDRP)
    Moad, Graeme
    POLYMER INTERNATIONAL, 2023, 72 (10) : 861 - 868
  • [10] Reversible-deactivation Radical Polymerization of Methyl Methacrylate Mediated by Carbodiimide Catalysts
    Wang, Yan-An
    Zhang, Xiao-Tao
    Shi, Yan
    Fu, Zhi-Feng
    Yang, Wan-tai
    ACTA POLYMERICA SINICA, 2018, (10): : 1287 - 1296