Uniqueness and asymptotic stability of Riemann solutions for the compressible Euler equations

被引:42
|
作者
Chen, GQ
Frid, H
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
关键词
compressible Euler equations; discontinuous entropy solutions; Riemann solutions; uniqueness; asymptotic stability; scaling sequence; compactness; hyperbolic conservation laws;
D O I
10.1090/S0002-9947-00-02660-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the uniqueness of Riemann solutions in the class of entropy solutions in L-infinity boolean AND BVloc for the 3 x 3 system of compressible Euler equations, under usual assumptions on the equation of state for the pressure which imply strict hyperbolicity of the system and genuine nonlinearity of the first and third characteristic families. In particular, if the Riemann solutions consist of at most rarefaction waves and contact discontinuities, we show the global L-2-stability of the Riemann solutions even in the class of entropy solutions in L-infinity with arbitrarily large oscillation for the 3 x 3 system. We apply our framework established earlier to show that the uniqueness of Riemann solutions implies their inviscid asymptotic stability under L-1 perturbation of the Riemann initial data, as long as the corresponding solutions are in L-infinity and have local bounded total variation satisfying a natural condition on its growth with time. No specific reference to any particular method for constructing the entropy solutions is made. Our uniqueness result for Riemann solutions can easily be extended to entropy solutions U(x, t), piecewise Lipschitz in x, for any t >0.
引用
收藏
页码:1103 / 1117
页数:15
相关论文
共 50 条