Integrative analysis of transcriptome and metabolome provides insights into the underlying mechanism of cold stress response and recovery in two tobacco cultivars

被引:27
|
作者
Hu, Zhengrong [1 ]
Yan, Weijie [2 ]
Yang, Chenkai [2 ]
Huang, Xuebing [3 ]
Hu, Xutong [4 ,6 ]
Li, Yangyang [1 ]
Yang, Jiashuo [1 ]
Xang, Shipeng [5 ]
Yi, Pengfei [6 ]
Hu, Risheng [1 ,5 ]
机构
[1] Hunan Tobacco Res Inst, Changsha 410004, Hunan, Peoples R China
[2] Hunan Agr Univ, Coll Agron, Changsha 410128, Hunan, Peoples R China
[3] Chinese Acad Sci, Innovat Acad Seed Design, CAS Key Lab Plant Germplasm Enhancement & Specialt, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[4] Univ Sydney, Fac Sci, Sydney, NSW 2006, Australia
[5] Changsha Tobacco Co, Tobacco Prod Technol Ctr, Changsha 410007, Hunan, Peoples R China
[6] Changde Tobacco Co, Changde 415300, Hunan, Peoples R China
关键词
Cold stress; Omics integration; Co-expression module; Molecular network; Tobacco; LOW-TEMPERATURE; FLAVONOID BIOSYNTHESIS; FREEZING TOLERANCE; GENE-EXPRESSION; SALT-STRESS; ARABIDOPSIS; PROTEIN; ACCUMULATION; ACCLIMATION; DROUGHT;
D O I
10.1016/j.envexpbot.2022.104920
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Low temperature is one of major environmental factors limiting the growth, quality and yield of tobacco. However, the molecular mechanism of tobacco cold response remains largely unknown. Here, integrated biochemical, transcriptomic and metabolomic analyses were carried out on tobacco leaves of cold-tolerant cultivar Xiangyan7 and cold-sensitive cultivar Taiyan8 under short- /long-term cold stress and recovery. Physiological and biochemical results showed that Taiyan8 was sensitive while Xiangyan7 was insensitive to cold stress. Integrated transcriptomics and metabolomics analysis revealed several key pathways in tobacco response to cold, including flavonoid biosynthesis, glutathione metabolism, zeatin biosynthesis, phenylpropanoid biosynthesis, starch and sucrose metabolism; two important pathways in the recovery, namely glyoxylate and dicarboxylate metabolism, flavonoid biosynthesis. The two cultivars had similar mechanisms in response to longterm cold stress. Whereas, more enriched pathways were identified in Taiyan8 under short-term stress, and the specifically enriched pathways were mainly involved in amino acid metabolism. By analyzing the metabolites involved in these pathways, a total of 26 key metabolites were screened out. These metabolites contents and biochemical indicator values were used as trait data for correlation analysis with gene expression modules, and 5 highly correlated modules were found. Within these modules, we identified 12 key candidate genes weighted as module hub genes, which involved ATPases, chlorophyll A-B binding protein, S-adenosine methionine decarboxylase, chalcone and stilbene synthases, UDP-glucosyltransferases, alcohol dehydrogenase, abhydrolase, proteins with ankyrin-repeat domains. The expression profiles of these genes further verified their involvement in tobacco cold response and recovery. These findings provide new insights into the regulatory networks of tobacco response to cold stress.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Transcriptome and Metabolome Analyses Reveal Molecular Responses of Two Pepper (Capsicum annuum L.) Cultivars to Cold Stress
    Zhang, Jianwei
    Liang, Le
    Xie, Yongdong
    Zhao, Zhao
    Su, Lihong
    Tang, Yi
    Sun, Bo
    Lai, Yunsong
    Li, Huanxiu
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [2] Insights into drought stress response mechanism of tobacco during seed germination by integrated analysis of transcriptome and metabolome
    Ren, Xiaomin
    Yang, Chenkai
    Zhu, Xianxin
    Yi, Pengfei
    Jiang, Xizhen
    Yang, Jiashuo
    Xiang, Shipeng
    Li, Yunxia
    Yu, Bei
    Yan, Weijie
    Li, Xiaoxu
    Li, Yangyang
    Hu, Risheng
    Hu, Zhengrong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 209
  • [3] Integrative analysis of the metabolome and transcriptome provides novel insights into the mechanisms of flavonoid biosynthesis in Camellia lanceoleosa
    Song, Qiling
    Gong, Wenfang
    Yu, Xinran
    Ji, Ke
    Chang, Yihong
    Wang, Linkai
    Yuan, Deyi
    SCIENTIA HORTICULTURAE, 2022, 304
  • [4] Integrative physiological, transcriptome, and metabolome analyses reveal the associated genes and metabolites involved in cold stress response in common vetch (Vicia sativa L.)
    Zhou, Qiang
    Cui, Yue
    Dong, Shuwei
    Luo, Dong
    Fang, Longfa
    Shi, Zunji
    Liu, Wenxian
    Wang, Zengyu
    Nan, Zhibiao
    Liu, Zhipeng
    FOOD AND ENERGY SECURITY, 2023, 12 (04):
  • [5] Combined Analysis of Transcriptome and Metabolome Provides Insights in Response Mechanism under Heat Stress in Avocado (Persea americana Mill.)
    Zheng, Xinyi
    Zhu, Qing
    Liu, Yi
    Chen, Junxiang
    Wang, Lingxia
    Xiu, Yu
    Zheng, Haoyue
    Lin, Shanzhi
    Ling, Peng
    Tang, Minqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (19)
  • [6] Integrated Analysis of Transcriptome and Metabolome Provides Insights into Flavonoid Biosynthesis of Blueberry Leaves in Response to Drought Stress
    Feng, Xinghua
    Bai, Sining
    Zhou, Lianxia
    Song, Yan
    Jia, Sijin
    Guo, Qingxun
    Zhang, Chunyu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [7] Comparative transcriptome analysis reveals the regulatory mechanisms of two tropical water lilies in response to cold stress
    Ma, Xiangyu
    Jin, Qijiang
    Wang, Yanjie
    Wang, Xiaowen
    Wang, Xuelian
    Yang, Meihua
    Ye, Chunxiu
    Yang, Zhijuan
    Xu, Yingchun
    BMC GENOMICS, 2023, 24 (01)
  • [8] Comparative Transcriptome Profiling of Two Contrasting Foxtail Millet Cultivars Provides Insights into Molecular Mechanisms Underlying Dehydration Stress Response
    Muthamilarasan, Mehanathan
    Suresh, Bonthala Venkata
    Singh, Roshan Kumar
    Choudhary, Pooja
    Aggarwal, Pooja Rani
    Prasad, Manoj
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (10) : 6425 - 6443
  • [9] Comparative Transcriptome Profiling of Two Contrasting Foxtail Millet Cultivars Provides Insights into Molecular Mechanisms Underlying Dehydration Stress Response
    Mehanathan Muthamilarasan
    Bonthala Venkata Suresh
    Roshan Kumar Singh
    Pooja Choudhary
    Pooja Rani Aggarwal
    Manoj Prasad
    Journal of Plant Growth Regulation, 2023, 42 : 6425 - 6443
  • [10] Comparative proteomic analysis reveals differential protein and energy metabolisms from two tobacco cultivars in response to cold stress
    Hu, Risheng
    Zhu, Xianxin
    Xiang, Shipeng
    Zhang, Xianwen
    Liu, Zhi
    Zhu, Lieshu
    Cao, Yu
    Yang, Chengwei
    Lai, Jianbin
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (01)