Smoothing with positivity-preserving Pade schemes for parabolic problems with nonsmooth data

被引:20
|
作者
Wade, BA [1 ]
Khaliq, AQM
Siddique, M
Yousuf, M
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Knox Coll, Dept Math, Galesburg, IL 61401 USA
[3] Edwards Waters Coll, Dept Math, Jacksonville, FL 32209 USA
关键词
Pade scheme; parabolic problem; nonsmooth data; positivity; nonsmooth payoff; Black-Scholes PDE;
D O I
10.1002/num.20039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of higher order numerical schemes for parabolic partial differential equations that are more robust than the well-known Rannacher schemes. The new family of algorithms utilizes diagonal Pade schemes combined with positivity-preserving Pade schemes instead of first subdiagonal Pade schemes. We utilize a partial fraction decomposition to address problems with accuracy and computational efficiency in solving the higher order methods and to implement the algorithms in parallel. Optimal order convergence for nonsmooth data is proved for the case of a self-adjoint operator in Hilbert space as well as in Banach space for the general case. Numerical experiments support the theorems, including examples in pricing options with nonsmooth payoff in financial mathematics. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:553 / 573
页数:21
相关论文
共 50 条
  • [41] Error analysis of positivity-preserving energy stable schemes for the modified phase field crystal model
    Qian, Yanxia
    Zhang, Yongchao
    Huang, Yunqing
    APPLIED NUMERICAL MATHEMATICS, 2025, 207 : 470 - 498
  • [42] Positivity-preserving analysis of explicit and implicit Lax-Friedrichs schemes for compressible Euler equations
    Tang H.-Z.
    Xu K.
    Journal of Scientific Computing, 2000, 15 (1) : 19 - 28
  • [43] Unconditional Positivity-Preserving and Energy Stable Schemes for a Reduced Poisson-Nernst-Planck System
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (05) : 1505 - 1529
  • [44] Positivity-preserving finite volume difference schemes for atmospheric dispersion models with degenerate vertical diffusion
    Koleva, Miglena N.
    Vulkov, Lubin G.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [45] POSITIVITY-PRESERVING FINITE DIFFERENCE WEIGHTED ENO SCHEMES WITH CONSTRAINED TRANSPORT FOR IDEAL MAGNETOHYDRODYNAMIC EQUATIONS
    Christlieb, Andrew J.
    Liu, Yuan
    Tang, Qi
    Xu, Zhengfu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04): : A1825 - A1845
  • [46] Positivity-preserving finite volume difference schemes for atmospheric dispersion models with degenerate vertical diffusion
    Miglena N. Koleva
    Lubin G. Vulkov
    Computational and Applied Mathematics, 2022, 41
  • [47] Asymptotic Preserving numerical schemes for multiscale parabolic problems
    Crouseilles, Nicolas
    Lemou, Mohammed
    Vilmart, Gilles
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (03) : 271 - 276
  • [48] High order positivity-preserving discontinuous Galerkin schemes for radiative transfer equations on triangular meshes
    Zhang, Min
    Cheng, Juan
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [49] Positivity-preserving method for high-order conservative schemes solving compressible Euler equations
    Hu, Xiangyu Y.
    Adams, Nikolaus A.
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 169 - 180
  • [50] On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations
    Zhang, Xaingxiong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 301 - 343