Smoothing with positivity-preserving Pade schemes for parabolic problems with nonsmooth data

被引:20
|
作者
Wade, BA [1 ]
Khaliq, AQM
Siddique, M
Yousuf, M
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Knox Coll, Dept Math, Galesburg, IL 61401 USA
[3] Edwards Waters Coll, Dept Math, Jacksonville, FL 32209 USA
关键词
Pade scheme; parabolic problem; nonsmooth data; positivity; nonsmooth payoff; Black-Scholes PDE;
D O I
10.1002/num.20039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of higher order numerical schemes for parabolic partial differential equations that are more robust than the well-known Rannacher schemes. The new family of algorithms utilizes diagonal Pade schemes combined with positivity-preserving Pade schemes instead of first subdiagonal Pade schemes. We utilize a partial fraction decomposition to address problems with accuracy and computational efficiency in solving the higher order methods and to implement the algorithms in parallel. Optimal order convergence for nonsmooth data is proved for the case of a self-adjoint operator in Hilbert space as well as in Banach space for the general case. Numerical experiments support the theorems, including examples in pricing options with nonsmooth payoff in financial mathematics. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:553 / 573
页数:21
相关论文
共 50 条
  • [31] S 2 synthetic acceleration and positivity-preserving schemes for solving the neutron transport equation
    Yuan, Daming
    Yu, Yongbo
    Zheng, Huasheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 137
  • [32] Positivity-preserving high order finite difference WENO schemes for compressible Euler equations
    Zhang, Xiangxiong
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (05) : 2245 - 2258
  • [33] Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences
    Chapwanya, Michael
    Lubuma, Jean M. -S.
    Mickens, Ronald E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (09) : 1071 - 1082
  • [34] Positivity-preserving third order DG schemes for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Wang, Zhongming
    Yin, Peimeng
    Yu, Hui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 452
  • [35] Positivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations
    Cai, Xiaofeng
    Zhang, Xiangxiong
    Qiu, Jianxian
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (02) : 464 - 483
  • [36] Decoupled, Positivity-Preserving and Unconditionally Energy Stable Schemes for the Electrohydrodynamic Flow with Variable Density
    Wang, Kun
    Liu, Enlong
    Zheng, Haibiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (02)
  • [37] A positivity-preserving finite element method for chemotaxis problems in 3D
    Strehl, Robert
    Sokolov, Andriy
    Kuzmin, Dmitri
    Horstmann, Dirk
    Turek, Stefan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 290 - 303
  • [38] A positivity-preserving RD-FV scheme for diffusion problems on triangular meshes
    Zhang, Jiexing
    Wang, Yi
    Ni, Guoxi
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 221 - 235
  • [39] Smoothing schemes for reaction-diffusion systems with nonsmooth data
    Khaliq, A. Q. M.
    Martin-Vaquero, J.
    Wade, B. A.
    Yousuf, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 374 - 386
  • [40] On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes
    Zhang, Xiangxiong
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (23) : 8918 - 8934