Smoothing with positivity-preserving Pade schemes for parabolic problems with nonsmooth data

被引:20
|
作者
Wade, BA [1 ]
Khaliq, AQM
Siddique, M
Yousuf, M
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Knox Coll, Dept Math, Galesburg, IL 61401 USA
[3] Edwards Waters Coll, Dept Math, Jacksonville, FL 32209 USA
关键词
Pade scheme; parabolic problem; nonsmooth data; positivity; nonsmooth payoff; Black-Scholes PDE;
D O I
10.1002/num.20039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of higher order numerical schemes for parabolic partial differential equations that are more robust than the well-known Rannacher schemes. The new family of algorithms utilizes diagonal Pade schemes combined with positivity-preserving Pade schemes instead of first subdiagonal Pade schemes. We utilize a partial fraction decomposition to address problems with accuracy and computational efficiency in solving the higher order methods and to implement the algorithms in parallel. Optimal order convergence for nonsmooth data is proved for the case of a self-adjoint operator in Hilbert space as well as in Banach space for the general case. Numerical experiments support the theorems, including examples in pricing options with nonsmooth payoff in financial mathematics. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:553 / 573
页数:21
相关论文
共 50 条
  • [21] C1 positivity-preserving interpolation schemes with local free parameters
    Qin, Xiangbin
    Qin, Lei
    Xu, Qingsong
    IAENG International Journal of Computer Science, 2016, 43 (02) : 219 - 227
  • [22] Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis
    Tang, T
    Xu, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (02): : 258 - 281
  • [23] Gas-kinetic schemes for the compressible Euler equations: Positivity-preserving analysis
    Tang T.
    Xu K.
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 (2): : 258 - 281
  • [24] High-order positivity-preserving kinetic schemes for the compressible Euler equations
    Estivalezes, JL
    Villedieu, P
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) : 2050 - 2067
  • [25] A Decoupled and Positivity-Preserving DDFV Scheme for Diffusion Problems on Polyhedral Meshes
    Dong, Qiannan
    Su, Shuai
    Wu, Jiming
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (05) : 1378 - 1412
  • [26] A New Positivity-Preserving Technique for High-Order Schemes to Solve Extreme Problems of Euler Equations on Structured Meshes
    Tan, Yan
    Zhang, Qiang
    Zhu, Jun
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (01)
  • [27] High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes
    Christlieb, Andrew J.
    Liu, Yuan
    Tang, Qi
    Xu, Zhengfu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 334 - 351
  • [28] A New Positivity-Preserving Technique for High-Order Schemes to Solve Extreme Problems of Euler Equations on Structured Meshes
    Yan Tan
    Qiang Zhang
    Jun Zhu
    Journal of Scientific Computing, 2024, 99
  • [29] POSITIVITY-PRESERVING DISCONTINUOUS GALERKIN SCHEMES FOR LINEAR VLASOV-BOLTZMANN TRANSPORT EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Proft, Jennifer
    MATHEMATICS OF COMPUTATION, 2012, 81 (277) : 153 - 190
  • [30] Positivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations
    Xiaofeng Cai
    Xiangxiong Zhang
    Jianxian Qiu
    Journal of Scientific Computing, 2016, 68 : 464 - 483