Smoothing with positivity-preserving Pade schemes for parabolic problems with nonsmooth data

被引:20
|
作者
Wade, BA [1 ]
Khaliq, AQM
Siddique, M
Yousuf, M
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Knox Coll, Dept Math, Galesburg, IL 61401 USA
[3] Edwards Waters Coll, Dept Math, Jacksonville, FL 32209 USA
关键词
Pade scheme; parabolic problem; nonsmooth data; positivity; nonsmooth payoff; Black-Scholes PDE;
D O I
10.1002/num.20039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of higher order numerical schemes for parabolic partial differential equations that are more robust than the well-known Rannacher schemes. The new family of algorithms utilizes diagonal Pade schemes combined with positivity-preserving Pade schemes instead of first subdiagonal Pade schemes. We utilize a partial fraction decomposition to address problems with accuracy and computational efficiency in solving the higher order methods and to implement the algorithms in parallel. Optimal order convergence for nonsmooth data is proved for the case of a self-adjoint operator in Hilbert space as well as in Banach space for the general case. Numerical experiments support the theorems, including examples in pricing options with nonsmooth payoff in financial mathematics. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:553 / 573
页数:21
相关论文
共 50 条
  • [11] Positivity-preserving numerical schemes for lubrication-type equations
    Zhornitskaya, L
    Bertozzi, AL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (02) : 523 - 555
  • [12] A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system
    Jüngel, A
    Pinnau, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (02) : 385 - 406
  • [13] Positivity-preserving high-resolution schemes for systems of conservation laws
    Parent, Bernard
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) : 173 - 189
  • [14] Positivity-preserving and unconditionally energy stable numerical schemes for MEMS model
    Hou, Dianming
    Wang, Hui
    Zhang, Chao
    APPLIED NUMERICAL MATHEMATICS, 2022, 181 : 503 - 517
  • [15] Fast Explicit Positivity-preserving Schemes for the Black-Scholes Equation
    Milev, Mariyan
    Tagliani, Aldo
    Koleva, Dessislava
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'14), 2014, 1631 : 164 - 174
  • [16] Positivity-preserving interpolation of positive data by rational cubics
    Hussain, Malik Zawwar
    Sarfraz, Muhammad
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 446 - 458
  • [17] Positivity-preserving schemes for Euler equations: Sharp and practical CFL conditions
    Calgaro, C.
    Creuse, E.
    Goudon, T.
    Penel, Y.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 417 - 438
  • [18] COMPARATIVE STUDY OF HIGH-ORDER POSITIVITY-PRESERVING WENO SCHEMES
    Kotov, Dmitry
    Yee, H. C.
    Sjogreen, Bjorn
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 1047 - 1058
  • [19] Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates
    Ling, Dan
    Cheng, Juan
    Shu, Chi-Wang
    COMPUTERS & FLUIDS, 2017, 157 : 112 - 130
  • [20] ASYMPTOTIC-PRESERVING AND POSITIVITY-PRESERVING IMPLICIT-EXPLICIT SCHEMES FOR THE STIFF BGK EQUATION
    Hu, Jingwei
    Shu, Ruiwen
    Zhang, Xiangxiong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 942 - 973