Laplace approximation for Bessel functions of matrix argument

被引:31
作者
Butler, RW
Wood, ATA
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
asymptotic approximation; Bessel function; confluence relation; hypergeometric function; Laplace approximation;
D O I
10.1016/S0377-0427(02)00874-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive Laplace approximations to three functions of matrix argument which arise in statistics and elsewhere: matrix Bessel A(nu); matrix Bessel B-nu; and the type II confluent hypergeometric function of matrix argument, Psi. We examine the theoretical and numerical properties of the approximations. On the theoretical side, it is shown that the Laplace approximations to A(nu), B-nu and Psi given here, together with the Laplace approximations to the matrix argument functions F-1(1) and F-2(1) presented in Butler and Wood (Laplace approximations to hyper-geometric functions with matrix argument, Ann. Statist. (2002)), satisfy all the important confluence relations and symmetry relations enjoyed by the original functions. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:359 / 382
页数:24
相关论文
共 20 条
  • [1] Abramowitz M., 1970, HDB MATH FUNCTIONS
  • [2] ANDERSON GA, 1970, ANN MATH STAT, V36, P1153
  • [3] [Anonymous], 1975, Asymptotic Expansions of Integrals
  • [4] BUTLER RW, 1986, SCAND J STAT, V13, P257
  • [5] Butler RW, 2002, ANN STAT, V30, P1155
  • [6] Generalized inverse Gaussian distributions and their Wishart connections
    Butler, RW
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (01) : 69 - 75
  • [7] BUTLER RW, 2001, UNPUB LAPLACE APPROX
  • [8] EATON ML, 1985, P BERK C HON J NEYM, V2
  • [9] Fisher R., 1990, STAT METHODS EXPT DE
  • [10] MULTIVARIATE ASPECTS OF SHAPE-THEORY
    GOODALL, CR
    MARDIA, KV
    [J]. ANNALS OF STATISTICS, 1993, 21 (02) : 848 - 866