Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer

被引:83
作者
Fan, Yong [1 ]
Zhou, Xin [2 ]
Xia, Tian-Song [3 ]
Chen, Zhuo [1 ]
Li, Jin [1 ]
Liu, Qun [1 ]
Alolga, Raphael N. [1 ]
Chen, Yan [4 ]
lai, Mao-De [1 ]
Li, Ping [1 ]
Zhu, Wei [2 ]
Qi, Lian-Wen [1 ]
机构
[1] China Pharmaceut Univ, State Key Lab Nat Med, Nanjing 210009, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 1, Dept Oncol, Nanjing 210029, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Affiliated Hosp 1, Dept Breast Surg, Nanjing 210029, Jiangsu, Peoples R China
[4] Nanjing Med Univ, Affiliated Hosp 1, Emergency Ctr, Nanjing 210029, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
human plasma metabolomics; differential metabolites; molecular subtypes; breast cancer; GENE;
D O I
10.18632/oncotarget.7155
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: This work aims to identify differential metabolites and predicting molecular subtypes of breast cancer (BC). Methods: Plasma samples were collected from 96 BC patients and 79 normal participants. Metabolic profiles were determined by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry based on multivariate statistical data analysis. Results: We observed 64 differential metabolites between BC and normal group. Compared to human epidermal growth factor receptor 2 (HER2)-negative patients, HER2-positive group showed elevated aerobic glycolysis, gluconeogenesis, and increased fatty acid biosynthesis with reduced Krebs cycle. Compared with estrogen receptor (ER)-negative group, ER-positive patients showed elevated alanine, aspartate and glutamate metabolism, decreased glycerolipid catabolism, and enhanced purine metabolism. A panel of 8 differential metabolites, including carnitine, lysophosphatidylcholine (20: 4), proline, alanine, lysophosphatidylcholine (16: 1), glycochenodeoxycholic acid, valine, and 2-octenedioic acid, was identified for the classification of BC subtypes. These markers showed potential diagnostic value with average area under the curve at 0.925 (95% CI 0.867-0.983) for the training set (n=51) and 0.893 (95% CI 0.847-0.939) for the test set (n=45). Conclusion: Human plasma metabolomics is useful in identifying differential metabolites and predicting breast cancer subtypes.
引用
收藏
页码:9925 / 9938
页数:14
相关论文
共 25 条
  • [1] BALES JR, 1984, CLIN CHEM, V30, P426
  • [2] Glutamate enrichment as new diagnostic opportunity in breast cancer
    Budczies, Jan
    Pfitzner, Berit M.
    Gyoerffy, Balazs
    Winzer, Klaus-Juergen
    Radke, Cornelia
    Dietel, Manfred
    Fiehn, Oliver
    Denkert, Carsten
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (07) : 1619 - 1628
  • [3] Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism
    Budczies, Jan
    Brockmoeller, Scarlet F.
    Mueller, Berit M.
    Barupal, Dinesh K.
    Richter-Ehrenstein, Christiane
    Kleine-Tebbe, Anke
    Griffin, Julian L.
    Oresic, Matej
    Dietel, Manfred
    Denkert, Carsten
    Fiehn, Oliver
    [J]. JOURNAL OF PROTEOMICS, 2013, 94 : 279 - 288
  • [4] Cytosolic phospholipase A2-α expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours
    Caiazza, F.
    McCarthy, N. S.
    Young, L.
    Hill, A. D. K.
    Harvey, B. J.
    Thomas, W.
    [J]. BRITISH JOURNAL OF CANCER, 2011, 104 (02) : 338 - 344
  • [5] Cytosolic Phospholipase A2 Activation Correlates with HER2 Overexpression and Mediates Estrogen-Dependent Breast Cancer Cell Growth
    Caiazza, Francesco
    Harvey, Brian J.
    Thomas, Warren
    [J]. MOLECULAR ENDOCRINOLOGY, 2010, 24 (05) : 953 - 968
  • [6] Cellular Fatty Acid Metabolism and Cancer
    Currie, Erin
    Schulze, Almut
    Zechner, Rudolf
    Walther, Tobias C.
    Farese, Robert V., Jr.
    [J]. CELL METABOLISM, 2013, 18 (02) : 153 - 161
  • [7] Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis
    Fong, Miranda Y.
    Zhou, Weiying
    Liu, Liang
    Alontaga, Aileen Y.
    Chandra, Manasa
    Ashby, Jonathan
    Chow, Amy
    O'Connor, Sean Timothy Francis
    Li, Shasha
    Chin, Andrew R.
    Somlo, George
    Palomares, Melanie
    Li, Zhuo
    Tremblay, Jacob R.
    Tsuyada, Akihiro
    Sun, Guoqiang
    Reid, Michael A.
    Wu, Xiwei
    Swiderski, Piotr
    Ren, Xiubao
    Shi, Yanhong
    Kong, Mei
    Zhong, Wenwan
    Chen, Yuan
    Wang, Shizhen Emily
    [J]. NATURE CELL BIOLOGY, 2015, 17 (02) : 183 - +
  • [8] Metabolic Characterization of Hepatocellular Carcinoma Using Nontargeted Tissue Metabolomics
    Huang, Qiang
    Tan, Yexiong
    Yin, Peiyuan
    Ye, Guozhu
    Gao, Peng
    Lu, Xin
    Wang, Hongyang
    Xu, Guowang
    [J]. CANCER RESEARCH, 2013, 73 (16) : 4992 - 5002
  • [9] Jemal A, 2009, CA-CANCER J CLIN, V59, P225, DOI [10.3322/caac.20006, 10.3322/caac.21254, 10.3322/caac.21332, 10.3322/caac.21551, 10.3322/caac.20073, 10.3322/caac.21387, 10.3322/caac.21654, 10.3322/caac.21601]
  • [10] Diagnosis of bladder cancer and prediction of survival by urinary metabolomics
    Jin, Xing
    Yun, Seok Joong
    Jeong, Pildu
    Kim, Isaac Yi
    Kim, Wun-Jae
    Park, Sunghyouk
    [J]. ONCOTARGET, 2014, 5 (06) : 1635 - 1645