Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer

被引:85
作者
Fan, Yong [1 ]
Zhou, Xin [2 ]
Xia, Tian-Song [3 ]
Chen, Zhuo [1 ]
Li, Jin [1 ]
Liu, Qun [1 ]
Alolga, Raphael N. [1 ]
Chen, Yan [4 ]
lai, Mao-De [1 ]
Li, Ping [1 ]
Zhu, Wei [2 ]
Qi, Lian-Wen [1 ]
机构
[1] China Pharmaceut Univ, State Key Lab Nat Med, Nanjing 210009, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 1, Dept Oncol, Nanjing 210029, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Affiliated Hosp 1, Dept Breast Surg, Nanjing 210029, Jiangsu, Peoples R China
[4] Nanjing Med Univ, Affiliated Hosp 1, Emergency Ctr, Nanjing 210029, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
human plasma metabolomics; differential metabolites; molecular subtypes; breast cancer; GENE;
D O I
10.18632/oncotarget.7155
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: This work aims to identify differential metabolites and predicting molecular subtypes of breast cancer (BC). Methods: Plasma samples were collected from 96 BC patients and 79 normal participants. Metabolic profiles were determined by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry based on multivariate statistical data analysis. Results: We observed 64 differential metabolites between BC and normal group. Compared to human epidermal growth factor receptor 2 (HER2)-negative patients, HER2-positive group showed elevated aerobic glycolysis, gluconeogenesis, and increased fatty acid biosynthesis with reduced Krebs cycle. Compared with estrogen receptor (ER)-negative group, ER-positive patients showed elevated alanine, aspartate and glutamate metabolism, decreased glycerolipid catabolism, and enhanced purine metabolism. A panel of 8 differential metabolites, including carnitine, lysophosphatidylcholine (20: 4), proline, alanine, lysophosphatidylcholine (16: 1), glycochenodeoxycholic acid, valine, and 2-octenedioic acid, was identified for the classification of BC subtypes. These markers showed potential diagnostic value with average area under the curve at 0.925 (95% CI 0.867-0.983) for the training set (n=51) and 0.893 (95% CI 0.847-0.939) for the test set (n=45). Conclusion: Human plasma metabolomics is useful in identifying differential metabolites and predicting breast cancer subtypes.
引用
收藏
页码:9925 / 9938
页数:14
相关论文
共 25 条
[1]  
BALES JR, 1984, CLIN CHEM, V30, P426
[2]   Glutamate enrichment as new diagnostic opportunity in breast cancer [J].
Budczies, Jan ;
Pfitzner, Berit M. ;
Gyoerffy, Balazs ;
Winzer, Klaus-Juergen ;
Radke, Cornelia ;
Dietel, Manfred ;
Fiehn, Oliver ;
Denkert, Carsten .
INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (07) :1619-1628
[3]   Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism [J].
Budczies, Jan ;
Brockmoeller, Scarlet F. ;
Mueller, Berit M. ;
Barupal, Dinesh K. ;
Richter-Ehrenstein, Christiane ;
Kleine-Tebbe, Anke ;
Griffin, Julian L. ;
Oresic, Matej ;
Dietel, Manfred ;
Denkert, Carsten ;
Fiehn, Oliver .
JOURNAL OF PROTEOMICS, 2013, 94 :279-288
[4]   Cytosolic phospholipase A2-α expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours [J].
Caiazza, F. ;
McCarthy, N. S. ;
Young, L. ;
Hill, A. D. K. ;
Harvey, B. J. ;
Thomas, W. .
BRITISH JOURNAL OF CANCER, 2011, 104 (02) :338-344
[5]   Cytosolic Phospholipase A2 Activation Correlates with HER2 Overexpression and Mediates Estrogen-Dependent Breast Cancer Cell Growth [J].
Caiazza, Francesco ;
Harvey, Brian J. ;
Thomas, Warren .
MOLECULAR ENDOCRINOLOGY, 2010, 24 (05) :953-968
[6]   Cellular Fatty Acid Metabolism and Cancer [J].
Currie, Erin ;
Schulze, Almut ;
Zechner, Rudolf ;
Walther, Tobias C. ;
Farese, Robert V., Jr. .
CELL METABOLISM, 2013, 18 (02) :153-161
[7]   Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis [J].
Fong, Miranda Y. ;
Zhou, Weiying ;
Liu, Liang ;
Alontaga, Aileen Y. ;
Chandra, Manasa ;
Ashby, Jonathan ;
Chow, Amy ;
O'Connor, Sean Timothy Francis ;
Li, Shasha ;
Chin, Andrew R. ;
Somlo, George ;
Palomares, Melanie ;
Li, Zhuo ;
Tremblay, Jacob R. ;
Tsuyada, Akihiro ;
Sun, Guoqiang ;
Reid, Michael A. ;
Wu, Xiwei ;
Swiderski, Piotr ;
Ren, Xiubao ;
Shi, Yanhong ;
Kong, Mei ;
Zhong, Wenwan ;
Chen, Yuan ;
Wang, Shizhen Emily .
NATURE CELL BIOLOGY, 2015, 17 (02) :183-+
[8]   Metabolic Characterization of Hepatocellular Carcinoma Using Nontargeted Tissue Metabolomics [J].
Huang, Qiang ;
Tan, Yexiong ;
Yin, Peiyuan ;
Ye, Guozhu ;
Gao, Peng ;
Lu, Xin ;
Wang, Hongyang ;
Xu, Guowang .
CANCER RESEARCH, 2013, 73 (16) :4992-5002
[9]  
Jemal A, 2009, CA-CANCER J CLIN, V59, P225, DOI [10.3322/caac.20006, 10.3322/caac.21254, 10.3322/caac.21332, 10.3322/caac.21551, 10.3322/caac.20073, 10.3322/caac.21387, 10.3322/caac.21654, 10.3322/caac.21601]
[10]   Diagnosis of bladder cancer and prediction of survival by urinary metabolomics [J].
Jin, Xing ;
Yun, Seok Joong ;
Jeong, Pildu ;
Kim, Isaac Yi ;
Kim, Wun-Jae ;
Park, Sunghyouk .
ONCOTARGET, 2014, 5 (06) :1635-1645