Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution

被引:120
作者
He, Zhe [1 ]
Han, Zehua [1 ]
Kizer, Megan [2 ]
Linhardt, Robert J. [2 ]
Wang, Xing [2 ]
Sinyukov, Alexander M. [1 ]
Wang, Jizhou [1 ]
Deckert, Volker [3 ,4 ]
Sokolov, Alexei V. [1 ,5 ]
Hu, Jonathan [5 ]
Scully, Marlan O. [1 ,5 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
[2] Rensselaer Polytech Inst, Troy, NY 12180 USA
[3] Friedrich Schiller Univ Jena, Lessingstr 10, D-07743 Jena, Germany
[4] Leibniz Inst Photon Technol, Albert Einsteinstr 9, D-07745 Jena, Germany
[5] Baylor Univ, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
SPECTROSCOPY; MOLECULE; ADENINE;
D O I
10.1021/jacs.8b11506
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tip-enhanced Raman scattering (TERS) is a promising optical and analytical technique for chemical imaging and sensing at single molecule resolution. In particular, TERS signals generated by a gap-mode configuration where a silver tip is coupled with a gold substrate can resolve a single-stranded DNA (ssDNA) molecule with a spatial resolution below 1 nm. To demonstrate the proof of subnanometer resolution, we show direct nucleic acid sequencing using TERS of a phage ssDNA (M13mp18). M13mp18 provides a known sequence and, through our deposition strategy, can be stretched (uncoiled) and attached to the substrate by its phosphate groups, while exposing its nucleobases to the tip. After deposition, we scan the silver tip along the ssDNA and collect TERS signals with a step of 0.5 nm, comparable to the bond length between two adjacent DNA bases. By demonstrating the real-time profiling of a ssDNA configuration and furthermore, with unique TERS signals of monomeric units of other biopolymers, we anticipate that this technique can be extended to the high-resolution imaging of various nanostructures as well as the direct sequencing of other important biopolymers including RNA, polysaccharides, and polypeptides.
引用
收藏
页码:753 / 757
页数:5
相关论文
共 33 条
[1]   Observation of single-stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy [J].
Adamcik, Jozef ;
Klinov, Dmitry V. ;
Witz, Guillaume ;
Sekatskii, Sergey K. ;
Dietler, Giovanni .
FEBS LETTERS, 2006, 580 (24) :5671-5675
[2]   DNA sequencing by nanopores: advances and challenges [J].
Agah, Shaghayegh ;
Zheng, Ming ;
Pasquali, Matteo ;
Kolomeisky, Anatoly B. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (41)
[3]  
[Anonymous], 2016, ARXIV160406598
[4]   Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method [J].
Bailo, Elena ;
Deckert, Volker .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) :1658-1661
[5]   Single-molecule views onhomologous recombination [J].
Candelli, Andrea ;
Modesti, Mauro ;
Peterman, Erwin J. G. ;
Wuite, Gijs J. L. .
QUARTERLY REVIEWS OF BIOPHYSICS, 2013, 46 (04) :323-348
[6]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[7]  
Chen C, 2014, NAT COMMUN, V5, DOI [10.1038/ncomms4312, 10.1038/ncomms4357]
[8]   Direct Observation of Multiple Pathways of Single-Stranded DNA Stretching [J].
Chen, Wuen-shiu ;
Chen, Wei-Hung ;
Chen, Zephan ;
Gooding, Ashton A. ;
Lin, Kuan-Jiuh ;
Kiang, Ching-Hwa .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[9]   Reference database of Raman spectra of biological molecules [J].
De Gelder, Joke ;
De Gussem, Kris ;
Vandenabeele, Peter ;
Moens, Luc .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (09) :1133-1147
[10]   Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils [J].
Deckert-Gaudig, Tanja ;
Kurouski, Dmitry ;
Hedegaard, Martin A. B. ;
Singh, Pushkar ;
Lednev, Igor K. ;
Deckert, Volker .
SCIENTIFIC REPORTS, 2016, 6