Nonlinear time-series analysis

被引:0
作者
Parlitz, U [1 ]
机构
[1] Univ Gottingen, Drittes Phys Inst, D-37073 Gottingen, Germany
来源
NONLINEAR MODELING: ADVANCED BLACK-BOX TECHNIQUES | 1998年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This tutorial review presents an overview of the achievements and some present research activities in the field of state space based methods for non-linear time-series analysis. In particular, questions of state space reconstruction, of modelling and prediction, of filtering and noise reduction, of detecting non-linearities in time series, and applications using chaotic synchronization are addressed. Furthermore, a new approach for modeling data from spatio-temporal systems is presented.
引用
收藏
页码:209 / 239
页数:31
相关论文
共 137 条
  • [1] LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS - THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA
    ABARBANEL, HDI
    BROWN, R
    KENNEL, MB
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (09): : 1347 - 1375
  • [2] THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS
    ABARBANEL, HDI
    BROWN, R
    SIDOROWICH, JJ
    TSIMRING, LS
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (04) : 1331 - 1392
  • [3] Generalized synchronization of chaos: The auxiliary system approach
    Abarbanel, HDI
    Rulkov, NF
    Sushchik, MM
    [J]. PHYSICAL REVIEW E, 1996, 53 (05) : 4528 - 4535
  • [4] ABARBANELHDI, 1996, ANAL OBSERVED CHAOTI
  • [5] Global nonlinear polynomial models: Structure, term clusters and fixed points
    Aguirre, LA
    Mendes, EMAM
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (02): : 279 - 294
  • [6] ALECSIC Z, 1991, PHYSICA D, V52, P362
  • [7] Reconstructing noisy dynamical systems by triangulations
    Allie, S
    Mees, A
    Judd, K
    Watson, D
    [J]. PHYSICAL REVIEW E, 1997, 55 (01): : 87 - 93
  • [8] ALUTERBORN W, 1997, INT J BIFURCAT CHAOS, V7, P2003
  • [9] [Anonymous], 1988, DETERMINISTIC CHAOS
  • [10] [Anonymous], 1992, NONLINEARITIES ACTIO