Nonlinear time-series analysis

被引:0
作者
Parlitz, U [1 ]
机构
[1] Univ Gottingen, Drittes Phys Inst, D-37073 Gottingen, Germany
来源
NONLINEAR MODELING: ADVANCED BLACK-BOX TECHNIQUES | 1998年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This tutorial review presents an overview of the achievements and some present research activities in the field of state space based methods for non-linear time-series analysis. In particular, questions of state space reconstruction, of modelling and prediction, of filtering and noise reduction, of detecting non-linearities in time series, and applications using chaotic synchronization are addressed. Furthermore, a new approach for modeling data from spatio-temporal systems is presented.
引用
收藏
页码:209 / 239
页数:31
相关论文
共 137 条
[1]   LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS - THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA [J].
ABARBANEL, HDI ;
BROWN, R ;
KENNEL, MB .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1991, 5 (09) :1347-1375
[2]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[3]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[4]  
ABARBANELHDI, 1996, ANAL OBSERVED CHAOTI
[5]   Global nonlinear polynomial models: Structure, term clusters and fixed points [J].
Aguirre, LA ;
Mendes, EMAM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (02) :279-294
[6]  
ALECSIC Z, 1991, PHYSICA D, V52, P362
[7]   Reconstructing noisy dynamical systems by triangulations [J].
Allie, S ;
Mees, A ;
Judd, K ;
Watson, D .
PHYSICAL REVIEW E, 1997, 55 (01) :87-93
[8]  
ALUTERBORN W, 1997, INT J BIFURCAT CHAOS, V7, P2003
[9]  
[Anonymous], 1988, DETERMINISTIC CHAOS
[10]  
[Anonymous], 1992, NONLINEARITIES ACTIO