Multiscale toughening of ZrB2-SiC-Graphene@ZrB2-SiC dual composite ceramics

被引:30
作者
Cheng, Yehong [1 ]
Lyu, Yang [1 ]
Han, Wenbo [1 ]
Hu, Ping [1 ]
Zhou, Shanbao [1 ]
Zhang, Xinghong [1 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat & Struct, Natl Key Lab Sci & Technol Adv Composites Special, Harbin, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
fracture toughness; graphene oxide; multiscale toughening; thermal shock resistance; ultra-high temperature ceramics; THERMAL-SHOCK RESISTANCE; LAMINATED ZRB2-SIC/GRAPHITE CERAMICS; MECHANICAL-PROPERTIES; ZIRCONIUM DIBORIDE; HYBRID COMPOSITES; BEHAVIOR; CARBON; ZRB2; OXIDATION; STRENGTH;
D O I
10.1111/jace.16068
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The design of bioinspired architectures is effective for increasing the toughness of ceramic materials. Particularly, a dual composite equiaxial architecture is ideal for fabricating weak interface-toughened ZrB2-SiC ceramics with isotropic performance. In this paper, ZrB2-SiC-Graphene@ZrB2-SiC dual composite ceramics were synthesized via an innovative processing technique of granulating-coating method. ZrB2-20 vol.% SiC containing 30 vol.% Graphene was selected as weak interface to realize multiscale toughening and improve the thermal shock resistance of ZrB2-SiC ceramic materials. The incorporation of ZrB2-SiC-Graphene weak interface into the ZrB2-SiC matrix improved the damage tolerance and critical thermal shock temperature difference. The design of equiaxial structures moderated the anisotropy of performance in different planes. The graphene sheets incorporated in the ZrB2-SiC-Graphene interface phase played a key role in multiscale toughening, including macroscopic toughening of crack deflection and microcracks, and microscopic toughening of graphene bridging and pull-out.
引用
收藏
页码:2041 / 2052
页数:12
相关论文
共 40 条
[11]  
Kovar D, 1997, J AM CERAM SOC, V80, P2471, DOI 10.1111/j.1151-2916.1997.tb03148.x
[12]   Designing highly toughened hybrid composites through nature-inspired hierarchical complexity [J].
Launey, M. E. ;
Munch, E. ;
Alsem, D. H. ;
Barth, H. B. ;
Saiz, E. ;
Tomsia, A. P. ;
Ritchie, R. O. .
ACTA MATERIALIA, 2009, 57 (10) :2919-2932
[13]   R-curve behavior of laminated ZrB2-SiC/Graphite ceramics in two different directions [J].
Liu, Xinchao ;
Wei, Chuncheng ;
Feng, Liu ;
Niu, Jinye ;
Yang, Zanzhong .
CERAMICS INTERNATIONAL, 2017, 43 (08) :6612-6617
[14]  
McHale A.E., 1994, DATA COLLECTED PHASE, VX
[15]   ZrB2-SiC Sharp Leading Edges in High Enthalpy Supersonic Flows [J].
Monteverde, Frederic ;
Savino, Raffaele .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2012, 95 (07) :2282-2289
[16]   Pressureless sintering of ZrB2-SiC composite laminates using boron and carbon as sintering aids [J].
Padovano, E. ;
Badini, C. ;
Biamino, S. ;
Pavese, M. ;
Yang, W. S. ;
Fino, P. .
ADVANCES IN APPLIED CERAMICS, 2013, 112 (08) :478-486
[17]   Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites [J].
Parvizi, Soroush ;
Ahmadi, Zohre ;
Zamharir, Mehran Jaberi ;
Asl, Mehdi Shahedi .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2018, 75 :10-17
[18]   Heat conduction mechanisms in hot pressed ZrB2 and ZrB2-SiC composites [J].
Patel, Manish ;
Prasad, V. V. Bhanu ;
Jayaram, Vikram .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (10) :1615-1624
[19]   In situ studies of oxidation of ZrB2 and ZrB2-SiC composites at high temperatures [J].
Sarin, P. ;
Driemeyer, P. E. ;
Haggerty, R. P. ;
Kim, D. -K. ;
Bell, J. L. ;
Apostolov, Z. D. ;
Kriven, W. M. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (11) :2375-2386
[20]   The fracture mechanics of finite crack extension [J].
Taylor, D ;
Cornetti, P ;
Pugno, N .
ENGINEERING FRACTURE MECHANICS, 2005, 72 (07) :1021-1038