Combining cellular genetic algorithms and local search for solving satisfiability problems

被引:17
作者
Folino, G [1 ]
Pizzuti, C [1 ]
Spezzano, G [1 ]
机构
[1] Univ Calabria, ISI, CNR, DEIS, I-87036 Arcavacata Di Rende, CS, Italy
来源
TENTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS | 1998年
关键词
D O I
10.1109/TAI.1998.744842
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new parallel hybrid method for solving the satisfiability problem that combines cellular genetic algorithms and the random walk (WSAT) strategy of GSAT is presented. The method, called CGWSAT, uses a cellular genetic algorithm to perform a global search on a random initial population of candidate solutions and a local selective generation of new strings. Global search is specialized in local search by adopting the WSAT strategy. CGWSAT has been implemented on a Meiko CS-2 parallel machine using a two-dimensional cellular automaton as parallel computation model. The algorithm has been tested on randomly generated problems and some classes of problems from the DIMACS test set.
引用
收藏
页码:192 / 198
页数:7
相关论文
共 23 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]   A PARALLEL CELLULAR-AUTOMATA ENVIRONMENT ON MULTICOMPUTERS FOR COMPUTATIONAL SCIENCE [J].
CANNATARO, M ;
DIGREGORIO, S ;
RONGO, R ;
SPATARO, W ;
SPEZZANO, G ;
TALIA, D .
PARALLEL COMPUTING, 1995, 21 (05) :803-823
[3]  
COOK SA, DIMACS SERIES DISCRE
[4]  
DEJONG A, 1989, P INT C GEN ALG G MA
[5]  
FOLINO G, 1998, P 24 EUR C VAST SWED
[6]  
Goldberg D., 1989, GENETIC ALGORITHMS S
[7]   GLOBAL OPTIMIZATION FOR SATISFIABILITY (SAT) PROBLEM [J].
GU, J .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1994, 6 (03) :361-381
[8]  
HAO JK, 1994, P EUR C ART INT ECAI
[9]  
JOHNSON DS, 1993, DIMACS SERIES DISCRE, V26
[10]  
KAMATH AP, MATH PROGRAMMING, V57, P215